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Executive summary 

This deliverable provides all the information from the most current state-of-the-art methods in the 
field of machine learning, artificial intelligence, telemedicine, Internet of Things (IOT), bioinformatics, sen-
sors, imaging to achieve patient specific outcome driven health care. More specifically, it includes tech-
nologies of devices, signals, and systems to optimize the acquisition, transmission, and storage for the 
biomedical and other related data. These analyzed methods will be part of the integrated SGABU plat-

form, with focus on cardiovascular disease modelling and cancer modelling. The document focuses on 
issues such as how much information can be analyzed and retrieved from medical images (Imaging infor-
matics), the developing methods and tools for a more comprehensive understanding of biological data 
(Bioinformatics), the wearable technologies for the prevention of diseases and the patient management 

(Sensor Informatics) and the systematic application of computer science and technology to public health 
practice (Public health informatics). 
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1. Introduction 

This deliverable collects all the state-of-the-art studies for enabling technologies of devices and sen-

sors, databases, systems, signals, and big data analytics to refine the acquisition, processing monitoring, 

storage for biomedical and related social, behavior, environmental data. 

Its aim is to present and analyze all the methods, mainly regarding the cardiovascular disease model-

ling and cancer modelling, which will be integrated into the SGABU platform. 

According to the main document structure of the state-of-the-art deliverable the following sections 
are provided: 

 Section 2 provides the state of the art in imaging informatics and specifically in Image Acquisition, 

Image Post Processing and Analysis in Radiology, Data Storage, Management and Sharing in Medical Im-

aging, Digital Pathology, In Silico Models and Integrative Analytics  

 Section 3 provides the state of the art in bioinformatics and presents the current methods and plat-
forms that are used for sequencing, as well as the stages that follow from the on stage of library prepa-

ration to data analysis and interpretation. 

 Section 4 provides all the techniques and applications included in Sensor Informatics for healthcare 
problems.   

 The last section describes current issues and proposed solutions in health domain, in the form of tools 

and software applications to support data collection, analysis and recording and advanced IT systems. 

Finally, topics of privacy issues and challenges for health informatics are discussed. 
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2. The State of the Art in Imaging Informatics 

Imaging informatics, also known as radiology informatics or medical imaging informatics, is a sub-
specialty of biomedical informatics that aims to improve the efficiency, accuracy, usability, and reliability 

of medical imaging services within the healthcare enterprise. It is devoted to the study on how infor-
mation contained within medical images is retrieved, analysed, enhanced, and exchanged throughout the 
medical enterprise. In the following, an overview is provided of prevailing concepts, challenges and op-
portunities, and future trends are also discussed. 

2.1 Image Acquisition 

There are different image acquisition techniques reported in the literature, and with alterations in 

each modality regarding the technical setup, as well as the protocols to be followed. The most common 
modalities in imaging acquisition are the following: 

Ultrasound (US): Acoustic waves at frequencies in the range of 1.5 - 

15 MHz are transmitted into the body and the scattered and reflected 
echo-signals are processed to reconstruct an image. Several innova-

tions extended the capabilities of ultrasound imaging: flow analysis by 
Doppler imaging led to the evaluation of the velocity profile in cardio-

vascular system [1]. To overcome the echogenicity of blood, ultrasound 
contrast agents made of encapsulated gas microbubbles were intro-

duced in [2]. Attaching specific ligands to these bubbles enabled ultra-

sound molecular imaging [3]. Other applications of US include elas-

tography, where the deformation of tissue is measured in the ultra-
sound images [4]. Ultrasound is not limited to 2D imaging, and use of 

3D and 4D imaging is expanding, though with reduced temporal reso-
lution [5]. A more recent innovation in contrast-enhanced imaging is 
ultrasound localization microscopy, where the localization of individual 

injected microbubbles and tracking of their displacements with a sub-
wavelength resolution enables the production of vascular and velocity 

maps at the scale of μm [6] (Fig. 1). These techniques are now being applied pre-clinically and clinically 
for imaging of the microvasculature of the brain, kidney, skin, tumors, and lymph nodes. 

X-ray:  Standard X-ray imaging techniques rely on a decrease of the X-ray beam’s intensity when trav-

ersing the sample, which can be measured directly with the assistance of an X-ray detector. In Phase-

contrast X-ray imaging (PCI) however, the beam’s phase shift caused by the sample is not measured di-

rectly, but is transformed into variations in intensity, which then can be recorded by the detector [7]. To 
enhance the visibility of vascular structures and organs during radiographic procedure, radiocontrast 
agent containing iodine is granted to the subject in an intravenous form. X-ray projection imaging has 
been extensively used in cardiovascular, mammography and musculoskeletal imaging applications. 

X-ray CT: X-ray computed tomography uses computer-processed combinations of multiple X-ray meas-

urements taken from different angles to produce a 3D image via the construction of a set of 2D axial slices 
of the body. Modified versions of CT imaging, such as dual- and multi-energy CT, use additional attenua-
tion measurements obtained with a second or multiple X-ray spectrum [8]. Four-dimensional computed 

Figure 1: Volumetric ultrasound lo-
calization microscopy implemented 
on an anesthetized rat brain [6]. 
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tomography (4DCT) is a type of CT scanning which records multiple images over time [9]. It allows play-
back of the scan as a video, so that physiological processes can be observed, and internal movement can 
be tracked. Recent developments within micro-computed tomography (micro-CT) imaging have com-
bined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-

micron spatial resolutions, opening the way for virtual histology, live cell imaging, sub-cellular imaging 
and correlative microscopy [10]. CT scans have greater image resolution as compared to standard X-ray 
imaging, enabling examination of finer details, although there are concerns related to the required radi-
ation dosage. 

MRI: The operating principle of MRI is based on the detection of 

released electromagnetic energy, mainly from protons, due to the al-

teration of the magnetic field induced by the machine.  Current ver-
sions make use of intravascular phase-contrast (PC) agents, and thus 

enable 3D velocity encoding, a technique known as 4D flow MRI [11]. 
4D techniques are found in many applications for the visualisation of 
the cardiovascular system (Fig. 2). 

Diffusion MRI:  This technique utilizes the diffusion of molecules, 

mainly water, in tissues to generate contrast in images, in vivo and 

non-invasively [12].  A special kind of diffusion MRI, diffusion tensor 
imaging (DTI), has been used extensively to map white matter tractog-
raphy in the brain [13]. 

Nuclear: Nuclear medicine uses radioactive tracers to assess bodily functions and to diagnose disease. 
Specially designed cameras allow doctors to track the path of these radioactive tracers. Single photon 

emission computed tomography (SPECT) and positron emission tomography (PET) are the two most com-

mon imaging modalities in nuclear medicine. Both techniques offer 3D image acquisitions generated by 
the computer from many projection (2D) images of the body recorded at different angles. The main dif-
ference between SPECT and PET scans is the type of radiotracers used. As far as their applications are 

concerned, SPECT scans are primarily used to diagnose and track the progression of heart disease, such 
as blocked coronary arteries [14]. There are also radiotracers to detect disorders in bone [15], gall bladder 

disease [16] and intestinal bleeding [17]. SPECT agents have recently become available for aiding in the 
diagnosis of Parkinson’s disease in the brain [18] and distinguishing this malady from other anatomically 
related movement disorders and dementias. The major purpose of PET scans is to detect cancer and mon-

itor its progression, response to treatment, and to detect metastases. Glucose utilization depends on the 
intensity of cellular and tissue activity, so it is greatly increased in rapidly dividing cancer cells. In fact, the 
degree of aggressiveness for most cancers is roughly paralleled by their rate of glucose utilization [19]. 
FDG has been shown to be the best available tracer for detecting cancer and its metastatic spread in the 

body [20].  

Synchrotron radiation (SR): SR involves the tuning of ionizing beams of UV and X-ray over wide energy 
ranges. The interaction of the beams produced with molecules onto samples enables the production of 

detailed images of the molecular structure of the materials, as well as detailed chemical analysis [21].  SR 
has been applied in different areas of medical science, such as angiography, bronchography, mammogra-
phy, microtomography (e.g., to study the 3D structure of trabecular bone), and in structural biology (e.g., 

protein crystallography), to name a few [22]. At the European Synchrotron Radiation Facility (Grenoble, 
France), a major research facility is operational on an advanced wiggler radiation beam port, ID17. The 
beam port is designed to carry out a broad range of research ranging from cell radiation biology to in vivo 
human studies [23]. 

Figure 2: 4D PC MRI image depicting 
the fluid flow in a vascular region of 
a human [11]. 
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Light Microscopy: The diffraction of light by small structural elements in a specimen is the principal 
process governing image formation in the light microscope [24].  Most light microscopes are limited by 
diffraction to about 250 nm resolution and magnifications by factor 2000. However, the more detailed 
architecture of unstained transparent biological samples cannot be seen with the normal bright-field mi-

croscope, which lead to the development of more intricate techniques such as fluorescence microscopy. 
Furthermore, two-photon fluorescence imaging uses two photons of similar frequencies to excite mole-
cules which allows for deeper penetration of tissue. Progress in laser-scanning two-photon fluorescence 
microscopy permits fast 3D data acquisition [25], while several forms of volumetric microscopy are 
emerging, enabling the development of time-lapse studies (time-lapse microscopy) [26]. These technolo-

gies have been used in neuroscience [27], cancer [28], tissue imaging [29] and cell activity [30], among 

many other areas. 

Confocal Microscopy (CM): CM is mainly used to produce images from the epidermis and superficial 

layer of dermis in human tissues [31]. In this technique, light is projected on a small area within the tissue, 
but unlike the conventional method the reflected light from the focal spot within the tissue is projected 
through a pinhole aperture onto a light detector. The use of a pinhole aperture allows only the focused 

light from the spot to pass through and eliminates the scattered light. Just as in conventional microscopy 

fluorescent dyes can be used to increase sensitivity and specificity. Confocal microscopy has been used 

to study the principles of vessel regression [32], erythrocyte properties [33], detecting skin lesions in on-
cology [34], and in studying the effect of glutaric acid on the blood–brain barrier and in perivascular as-
trocytes and pericytes [35]. It has also been used to quantify capillary cell blood flow [36] and in evaluating 

cutaneous microcirculation and dermal changes in systemic sclerosis [37]. 

Super-Resolution Microscopy (SMR): SMR is a family of techniques that emerged in the early 21st 

century. These techniques ‘break’ the diffraction limit that was previously thought to be impenetrable 
and as such allow for fluorescence imaging at resolutions up to ten times higher than in conventional 

techniques. Super-resolution imaging techniques rely on the near-field (photon-tunneling microscopy 
[38] and near-field scanning optical microscopy [39]) or on the far-field electromagnetic radiation physics. 

The major super-resolution microscopy techniques are stimulated emission depletion (STED), ground 
state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation 

localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured il-
lumination microscopy (SIM). While SIM achieves a two-fold improvement in spatial resolution compared 
to conventional optical microscopy, STED, RESOLFT, PALM and STORM have all gone beyond, pushing the 

limits of optical image resolution to the nanometer scale (‘nanoscopy’). Membrane nanostructure [40], 
dynamic regulation of proteins [41], chromosome dynamics [42], neuroscience (e.g., [43]), the visualisa-
tion of genome [44], and systems with relevance to the study of diseases associated with protein aggre-
gation, including Alzheimer’s [45] and Huntington’s [46], are just a few examples where new insights have 

already been gained with super-resolution fluorescence nanoscopy. 

Electron Microscopy: Electron microscopy uses a beam of accelerated electrons as a source of illumi-
nation.  A scanning transmission electron microscope has achieved better than 50 pm resolution in annu-

lar dark-field imaging mode [47] and magnifications of up to about 10,000,000×. In combination with 
immunocytochemical methods, electron microscopy is a powerful method to label and highlight single 
specific proteins [48], enabling a correlation of the ultrastructure and its function. 

OCT: Optical coherence tomography (OCT) is mainly used for cross-sectional tissue imaging [49]. This 
technique uses light in the near-infrared spectral range which has a penetration depth of several hundred 
microns in tissue. The backscattered light is measured with an interferometric set-up to reconstruct the 
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depth profile of the sample at the selected location. Advancements in OCT enable image flow [50], tissue 
dynamics [51] and even the estimation of mechanical properties like elasticity [52].  

Photo-Acoustic Imaging (PAI): As the name implies, PAI is based on the photoacoustic effect [53]. This 
technique utilizes the detection of mechanical waves induced by the thermoelastic expansion of tissues, 

when subjected to non-ionizing laser pulses. To date, some clinical applications of PAI are found for label-
free imaging of breast cancer [54], thyroid cancer [55] and inflammatory arthritis [56]. Instead of utilizing 
expensive lasers, low-cost light-emitting diodes (LED) are being investigated as a substitute laser illumi-
nation source in PAI systems [57]. AcousticX [58] is one such commercial LED-based PAI system.  

A common characteristic between all the image modalities is the trade-off between the image resolu-

tion and the penetration depth. Figure 3 shows a diagram of resolution to penetration depth for selected 

image modalities. Of course, there are more image acquisition techniques, such as hyperspectral imaging 
(HSI), laser speckle contrast and laser Doppler perfusion imaging, side-stream dark field (SDF) and incident 

dark field imaging (IDFI), diffuse correlation spectroscopy, functional near-infrared spectroscopy etc.; a 
detailed description of which would make this study overwhelming. 

 

Figure 3. Diagram of resolution to penetration depth for different image modalities [59]. 

 

2.2 Image Post Processing and Analysis in Radiology 

Medical image analysis involves the segmentation and classification of images. Image segmentation is 
the process of partitioning a digital image into multiple segments (sets of pixels). The goal of segmentation 

is to simplify and/or change the representation of an image into something that is more meaningful and 
easier to analyse. The intent of the classification process is to categorize all pixels in a digital image into 
one of several land cover classes, or ”themes”. This categorized data may then be used to produce the-
matic maps of the land cover present in an image. In the following, the current techniques applied in 

image segmentation and classification are presented. 
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2.2.1 Segmentation Process 

The first step of processing images is to segment them. Lay Khoon Lee et al. [60] classify segmentation 
algorithms into four main types: 1) threshold techniques, 2) clustering techniques, 3) region and 4) edge 

localization models. 

2.2.1.1 Algorithms Based on Thresholds 

By assuming that an image is composed of multiple grey level regions and using a histogram to classify 
the different peaks and valleys of that image, thresholding-based segmentation techniques partition the 
pixels (of that image) depending on their intensity values. Algorithms of this type search for pixels whose 
values are within the ranges defined by selected either manually or automatically intensity-level thresh-
olds. Manual selection needs a priori knowledge and sometimes trial experiments to find the proper 

threshold values while the automatic selection way combines the image information to get the adaptive 
threshold values automatically. The algorithms based on thresholds are the following: 

(a) Local Thresholding: 

Local thresholding determines different threshold values of sub-images by dividing an image into mul-

tiple sub-images or regions. Once each threshold is calculated, sub-images are merged. In addition, inter-
polation is applied to obtain appropriate results. The threshold value is calculated by different statistical 

methods, i.e. mean, standard deviation etc., applied on the histogram of the image to be segmented. 

(b) Otsu’s Method: 

Otsu’s method is used to perform automatic image thresholding [61]. The method works in determin-

ing an optimal value of threshold for segmenting the images. It is akin to calculating global threshold 

value, but Otsu’s method takes into consideration inter-class and intra-class variation in an image. 

(c) Gaussian Mixture Model (GMM): 

GMM is not so much a model as it is a probability distribution. In general, GMMs are used for repre-
senting normally distributed subpopulations within an overall population. Mixture models do not require 

knowing which subpopulation a data point belongs to, allowing the model to learn the subpopulations 
automatically.  

2.2.1.2 Region Based Segmentation 

These algorithms are used to directly locate regions in an image based upon similarity [62]. They are 
split into two broad categories. 

(a) Region Growing: 

The family of these techniques involve in priori the selection of a seed pixel based on some character-
istics (i.e. intensity level, inhomogeneity or edges in an image), and then the algorithm examines for 
neighbouring pixels that share a common characteristic property to determine whether the pixel neigh-
bours should be added to grow the region. The process of growing a seed pixel is iterated until, e.g., an 

edge is detected. 

(b) Region Splitting and Merging: 
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This technique first splits a given image into multiple sub-images and then merges them again. This 
approach is based on quad-tree generation, consisting of four branches. The branches of quad-tree rep-
resent sub-images [63]. The image region is split into four parts or branches and then merged back to-
gether till no partitioning or splitting is possible. 

2.2.1.3 Edge/Boundary Based: 

This method of segmentation deals with identifying and locating boundaries (or edges) in an image. 

The edges are sharp discontinuities (i.e. having different intensity values) in an image. The edge detectors 
are called “masks” or “filters” which are super-imposed over an image to detect discontinuities or bound-
aries [64]. The change in intensity level values of an image can be calculated by first order filters (Prewitt, 
Sobel, Canny) [65] that produce thick edges and second-order filters (Laplacian, Watershed Technique, 
etc.) that produce finer edges. 

2.2.1.4 Clustering Methods: 

Clustering methods are also considered as a sub-field of machine learning which is discussed below. 

This is a technique in which grouping of objects is done to form classes, and thus is referred to as cluster-
ing. The objects that share similar properties form a cluster. The objective here is maximisation of intra-

class similarity and minimization of interclass similarity. It is a type of unsupervised learning as we do not 
need to train data. The widely used algorithms are the following: 

(a) K-Means Algorithm: 

K-means classifies the N datasets into k clusters iteratively. The mean intensity is calculated for each 
of the clusters and then the pixels are classified accordingly with closest mean values. This approach tries 
to reduce the number of clusters and cluster variability. It is usually used for segmentation of MRI images 

[66]. 

(b) Fuzzy C-Means algorithm: 

This method is a generalisation of k-means algorithm and it is based on unsupervised learning. Since 

the uncertainty, vagueness and fuzziness are taken into consideration, it can sometimes result in intro-

ducing higher order fuzzy set for dealing with hesitation and uncertainty in classification of data. 

(c) Expectation Maximization (EM) Algorithm: 

EM algorithm is an iterative method to find (local) maximum likelihood estimates of parameters in 

statistical models (such as the GMM), where the model depends on unobserved latent variables. In each 
iteration, alternations between performing an expectation (E) step and a maximization (M) step are made 
to estimate the distribution of the latent variables. 

2.2.1.5 Machine Learning: 

Machine learning is a branch of AI which integrates data analysis methods to algorithms, used to 
perform a specific task without being explicitly programmed; Pattern recognition in the data and revision 
of predictions once new data arrive are the ‘bread and butter’ of AI. Usually, these methods need a large 

pool of training examples in order not to be subject to biases. Many algorithms of machine learning have 
been proposed in the field of imaging for segmentation and classification purposes. However, it seems 
until now that there is no such gold standard algorithm, and that the selection of the appropriate machine 

learning method depends on the application. In view of that, open access challenges such as the VISCERAL 
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project [67] are periodically organized in which participants can benchmark methods on standardized 
datasets.  Table 1 gives a brief overview of machine learning algorithms. 

Table 1. A summary of machine learning algorithms 1 

Group Description Selected algorithms 

Regression 
Algorithms 

Regression is concerned with modelling 
the relationship between variables that is 
iteratively refined using a measure of er-
ror in the predictions made by the model. 

Ordinary Least Squares Regression (OLSR), Linear Regres-
sion, Logistic Regression, Stepwise Regression, Multivariate 
Adaptive Regression Splines (MARS), Locally Estimated Scat-
terplot Smoothing (LOESS) 

Instance-based 
Algorithms 

These models build up a database of ex-
ample data and compare new data to the 
database to find the best match and make 
predictions. 

k-Nearest Neighbor (kNN), Learning Vector Quantization 
(LVQ), Self-Organizing Map (SOM), Locally Weighted Learn-
ing (LWL), Support Vector Machines (SVM) 

Regularization 
Algorithms 

Regularizations work by making slight 
modifications to the learning algorithm so 
that the model generalizes better. 

Ridge Regression, Least Absolute Shrinkage and Selection 
Operator (LASSO), Elastic Net, Least-Angle Regression (LARS) 

Decision Tree 
Algorithms 

A model of tree-structure decisions is con-
structed, based on actual values of attrib-
utes in the data, until a prediction decision 
is made. 

Classification and Regression Tree (CART), Iterative Dichoto-
miser 3 (ID3), C4.5 and C5.0, Chi-squared Automatic Interac-
tion Detection (CHAID), Decision Stump, M5, Conditional De-
cision Trees 

Bayesian 
Algorithms 

They apply Bayes’ theorem from statistics. Naive Bayes, Gaussian Naive Bayes, Multinomial Naive 
Bayes, Averaged One-Dependence Estimators (AODE), 
Bayesian Belief Network (BBN), Bayesian Network (BN) 

Association Rule 
Learning 

Algorithms 

They try to extract rules that best explain 
relationships between variables in the 
data. 

Apriori algorithm, Eclat algorithm 

Clustering 
Algorithms 

They use the inherent structure in the 
data to best organize the data into groups 
of maximum commonality. 

k-Means, k-Medians, Expectation Maximisation (EM), Hier-
archical Clustering 

Dimensionality 
Reduction 
Algorithms 

They are like clustering algorithms, but 
they work in an unsupervised manner, and 
‘describe’ the data using less information. 

Principal Component Analysis (PCA), Principal Component 
Regression (PCR), Partial Least Squares Regression (PLSR), 
Sammon Mapping, Multidimensional Scaling (MDS), Projec-
tion Pursuit, Linear Discriminant Analysis (LDA), Mixture Dis-
criminant Analysis (MDA), Quadratic Discriminant Analysis 
(QDA), Flexible Discriminant Analysis 

Ensemble 
Algorithms 

They ensemble multiple weaker models 
that are independently trained and whose 
predictions contribute to the overall pre-
diction. 

Boosting, Bootstrapped Aggregation (Bagging), AdaBoost, 
Weighted Average (Blending), Stacked Generalization (Stack-
ing), Gradient Boosting Machines (GBM), Gradient Boosted 
Regression Trees (GBRT), Random Forest 

Artificial Neural 
Network 

Algorithms 

They try to mimic the structure and func-
tion of biological neural networks. 

Perceptron, Multilayer Perceptrons (MLP), Back-Propaga-
tion, Stochastic Gradient Descent, Hopfield Network, Radial 
Basis Function Network (RBFN) 

Deep Learning 

They work with deeper layers of neurons 
and they have a more complex form than 
conventional neural networks.  

Convolutional Neural Network (CNN), Recurrent Neural Net-
works (RNNs), Long Short-Term Memory Networks (LSTMs), 
Stacked Auto-Encoders, Deep Boltzmann Machine (DBM), 
Deep Belief Networks (DBN), CycleGAN  

                                                           
1 The table is based on the book “Master Machine Learning Algorithms” by J. Brownlee, https://machinelearning-
mastery.com/a-tour-of-machine-learning-algorithms/. 
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2.2.1.6 Other Methods:  

(a) Active Shape Models or Deformable Models: 

In a deformable model approach, the shape of a model is optimized in order to match that of a 
structure of interest in an image [68]. This technique has been pioneered in 1987 by Terzopoulos et al. 
with the introduction of active contours or snakes [69]. This has been later generalized to active surfaces 
[70], but one difficulty arises when dealing with three-dimensional (3D) surfaces: the continuous param-

eterization of surfaces. 

(b) Graph-Cut Method: 

In this method, each image is represented as a graph of nodes, where each node corresponds to 

an image pixel and links connecting the nodes are called edges. After initialization of the path endpoints 

and adjustment of preferred paths by assignment of weights to individual edges, the algorithm tries to 
construct a pathway that minimizes the total weight sum [71]. 

(c) Level Set Method (LSM): 

This technique is based on object and contour detection and curve evolution [72]. The advantage 
of the level-set model is that one can perform numerical computations involving curves and surfaces on 

a fixed Cartesian grid without having to parameterize these objects [73]. Also, the level-set method makes 
it very easy to follow shapes that change topology, e.g. when a shape splits in two or develops holes, 
making it a great tool for modelling time-varying objects.  

(d) Multi-Atlas Segmentation (MAS): 

MAS approach includes a wide array of sophisticated algorithms that employ ideas from machine 

learning, probabilistic modelling, optimization, and computer vision, among other fields. Atlases are la-
belled, manually by an expert, images intended to train algorithms for segmentation and classification 

purposes. In this respect, MAS offers several capabilities such as the flexibility to better capture anatom-

ical variation, thus offering superior segmentation accuracy, although at high computational cost.  

(e) Genetic Algorithms: 

A genetic algorithm (GA) is a method for solving both constrained and unconstrained optimization 

problems based on a natural selection process that mimics biological evolution [74]. The algorithm works 

in 3 steps referred as operators: mutation, crossover, and selection. The method starts from a group of 
solutions (initial population), then evaluates the fitness of each individual in the population and repeats 
on selection of best until termination. The best individuals from the population are then combined to 

produce the offspring which possesses better characteristics. The changes, or mutations, introduced re-
sult in generation of heuristic solutions from the population until the most optimised solution is obtained. 

In image processing GAs have been used for image enhancement, segmentation, and feature extraction. 
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2.2.2 Classification Process 

Classification is the process of finding patterns on image features from numerical databases and cate-
gorizing pixels in an image into classes by providing suitable class labels. According to [75] the classifica-

tion process typically involves the following steps: image pre-processing, feature extraction, selection and 

classification (Fig. 4).  
Pre-processing is the first step in the classification process and its aim is to suppress unwanted distor-

tions and enhance image features important for further processing. Commonly applied steps in this stage 
include: 1) the conversion of the RGB image into a grayscale image, or 2) into a two-color pixel (usually 
black and white) image, 3) the improvement of contrast in the image (contrast stretching), 4) noise re-

moval of unwanted artifacts, and 5) sharpening of the image (i.e. creating an image that is less blurry than 
the original).  

Feature extraction involves the reduction of features extracted from the image. The techniques in 
feature extraction are usually based on 1)  statistical pixel-level (SPL) features (such as mean, vari-
ance etc.), 2) the color histogram of the pixels, 3) shape features (e.g. features providing information 

about the characteristic of the region boundary),  4) texture features that characterize the spatial distri-

bution of intensity levels in the local region of interest, and 5) relational features that provide information 

about the structure of the image with respect to single or multiple objects.  
The last step prior to classification is the selection of important features that are deemed important 

for the classification task. Different methods in feature selection include 1) filter methods, such as Per-

son’s correlation, linear discriminant analysis (LDA), analysis of variance (ANOVA), principal component 
analysis (PCA) and chi-square test, 2) wrapper methods that are based on machine learning approaches, 

such as forward selection, backward elimination and recursive feature elimination, and 3) embedded 
methods which combine wrapper and filter methods, such as least absolute shrinkage and selection op-

erator (LASSO). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A generic overview of classification process [75]. 
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2.2.2.1 Classification Techniques 

In the following, table 2 summarizes widely used classification techniques along with their benefits 

and limitations. 

Table 1: A summary of widely used classification algorithms. 

Classification 
techniques 

Description Benefits Limitations 

Decision tree 
induction 

[184] 

The dataset is broken 
down into smaller sub-
sets and is present in 
the form of tree 
nodes. The tree struc-
ture is characterized 
by a root node, deci-
sion nodes, leaf nodes 
and branches. ID3 and 
C4.5 are decision tree 
algorithms. 
 

o It requires less effort for data 
preparation during pre-pro-
cessing.  

o It does not require normaliza-
tion and scaling of the data. 

o Missing values in the data do 
not considerably affect the pro-
cess of building the decision 
tree 

o Learning and classification steps 
of a DT are simple and easy to 
explain. 

 Instability, i.e. a small change in the 
data can cause a large change in the 
tree structure. 

 It needs big datasets and more time 
to train the model. 

 As the dataset grows larger, tree 
calculations get complex, thus mak-
ing it not much useful in practical 
approaches. 

 As the dataset gets growing tree cal-
culations get complex, thus making 
it not much useful in practical ap-
proaches. 

 Inadequate for applying regression 
and predicting continuous values. 

Bayes 
classification 

methods [185] 

They are statistical 
classifiers based on 
Baye’s Theorem. They 
calculate class mem-
bership probabilities. 

o Easy and fast to implement. 
o It scales linearly with the data 

size, making it capable of han-
dling large datasets. 

o Small memory footprint. 
o Noise Resilience, i.e. if the data 

has noise or irrelevant features 
its capabilities will not be seri-
ously affected. This implies 
also that there will be less risk 
for overfitting. 

o It can train with a small da-
taset. 

o It can be updated ``on the go’’ 
and quickly. 

o It provides useful outputs such 
as mean and variance values 
for each feature and class. 

 It assumes that the features are in-
dependent. In real world problems 
where the correlation between the 
features is high, bias and inaccuracy 
will appear. 

 Inadequate for applying regression. 

 Training with more data will not 
make the algorithm capable of mak-
ing complex predictions. 

Rule-based 
classification 

[190] 

It contains set of IF-
THEN rules. The IF part 
involves one or more 
attribute tests, and 
these tests are logi-
cally ended, and ELSE 
part involves class pre-
diction. One rule is 

o Training data not required. 

o It comes handy to collect data 
as one starts the system with 
rules. 

o High precision. 

 

 The modification of knowledge 
base can be complicated. 

 High computational cost. 

 Very difficult to examine what ac-
tions are going to happen, and 
when. 
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created for each path 
ranging from the root 
to the leaf node. 

 It can result to complex domains. 

 

Neural 
network 

classifiers 
[186] 

It consists of units 
(neurons), arranged in 
layers, which convert 
an input vector into 
some output, trying to 
mimic neural networks 
of biological systems. 
In general, neural net-
works are defined as 
feed forward, back 
propagation, radial ba-
sis function, recurrent 
neural network, etc. 

 

o It performs well for nonlinear 
data with large number of in-
puts. 

o Once trained, the predictions 
are fast. 

o It can handle complex datasets, 
and even if the dataset is aug-
mented then it will still provide 
finer results. 

 

 High computational cost. 

 Time consuming with traditional 
CPUs. 

 It depends on large training da-
tasets, making the training process 
slow. Initial tuning may be 
needed. 

 It is prone to overfitting. 

Support 
vector 

machines 
(SVM) 
[187] 

A support vector ma-
chine is a binary classi-
fier, which uses kernel 
function to transform 
low-dimensional train-
ing samples to higher, 
and quadratic pro-
gramming to find the 
best classifier bound-
ary hyper-plane. It can 
incorporate expert 
knowledge by using 
the kernel trick. 

o More effective in high dimen-
sional spaces. 

o High accuracy in classification. 
o Works well when there is a 

clear margin of separation be-
tween classes.  

o It maximizes margin, so the 
model is more robust. 

o It supports kernels, enabling 
model design for even nonlin-
ear relations. 

o Fewer parameters to consider 
(kernel, error cost C) compared 
to neural networks. 

o Works well with fewer training 
samples. 

 Hard to interpret. 

 Not suitable for large data sets. 

 It does not perform well when tar-
get classes overlap, and when the 
number of features for each data 
point exceeds the number of train-
ing data samples. 

 Memory intensive. 
 

Lazy learners 
[188] 

It refers to machine 
learning methods in 
which generalization 
of the training data is 
delayed until a query 
is made to the system. 
The outcome of these 
algorithms is always 
class label. K-nearest 
is a good example of 
these algorithms. 

o Simple and easy to implement. 

o Parameters are not required. 

o High accuracy, but lower com-
pared to other supervised 
learning models. 

 High memory requirement. 

 High computational cost. 

 If dataset is nonlinear, then it is 
not working. 

 Hard to find optimal value, still not 
guaranteed about optimal solu-
tion. 
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Deep 
 Learning 

[189] 

It is like conventional 
neural networks but 
consists of more layers 
of neurons and pre-
sents more complexity.  
Convolutional neural 
network (CNN) belongs 
to DL methods. 

o Features are automatically de-
duced and optimally tuned for 
desired outcome.  

o Features are not required to be 
extracted ahead of time.  

o It offers robustness. 
o Massive parallel computations 

can be performed using GPUs 
and are scalable for large vol-
umes of data.  

o It delivers better performance 
results when amount of data is 
huge. 
Flexible architecture to be 
adapted for different scenarios. 

 It requires very large amount of 
data to perform better than other 
techniques. 

 It is extremely expensive to train 
due to complex data models. It also 
requires expensive GPUs and hun-
dreds of machines. 

 They are black-box functions and 
their output is difficult to compre-
hend. 

 There is no standard theory to guide 
you in selecting right deep learning 
tools as it requires knowledge of to-
pology, training method and other 
parameters, making it difficult to be 
adopted by less skilled people. 

 

2.2.3 Deep Learning for Segmentation/Classification 

Among the machine learning algorithms, deep learning seems to represent the current state of the art 
in image processing. The introduction of AlexNet [76] offered dense predictions obtained from classifica-

tion networks and set the standard for image classification. With that, other deep learning methods fol-
lowed, such as Deep Boltzmann Machines and stacked autoencoders, offering revolutionary results in 
segmentation of anatomy and pathology. Another notable example is CycleGAN which treats image-to-

image segmentation as a translation and synthesis problem, and it allows mapping of one image domain 

to another image domain even without having pairs of images [77].  Furthermore, CNNs have been used 
for registration tasks in medical image analysis.  In their work, de Vos et al. [78] propose an entire frame-

work for unsupervised affine and deformable image registration, in which once learning is done, CNNs 
can register unseen images in one shot.  

However, most deep models have millions to billions of parameters, needing a vast amount of data to 

optimize them. The discovery of 2D U-Net addresses this issue [79], offering highly accurate segmentation 
boundaries even with few input data, while recently the development of 3D U-net was proposed that 

allowed full volumetric processing of imaging data [80].  Other methods include fine-tuning a pre-trained 
model, which speeds the training process. However, this transfer learning approach is not straightforward 
when the objective is tissue classification of 3D image data. Here, transfer learning from natural images 

is not possible without first condensing the 3D data into two dimensions [81]. However, some approaches 

directly exploit the 3D data by using architectures that perform 3D convolutions and then train the net-
work from scratch on 3D medical images [82].  Table 3 presents applications of DL methods for segmen-

tation/classification purposes in different scenarios of medical imaging. 
DL methods, such as CNN algorithms, are black-box functions and it is not easy to comprehend their 

output.  What the CNN network has learned and how it derives its classification decisions is an emerging 
area of deep learning. Common approaches include 1) the visualization of nearest neighbors of image 

patches [76], 2) the creation of saliency maps [83], guided propagation [84], and 3) the feature inversion 
approach [85]. Lastly, worth to mention, MICCAI [86], CAMMELYON [87] and IEEE [88] challenges are 
posted every year for segmentation and classification algorithms for images obtained with different mo-
dalities. 
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Table 2: Different DL methods applied for classification/segmentation purposes [89]. 

Year – [REF] 
Author 

Disease 
 

Imaging 
Data 

DL method 
Segmentation/ 
Classification 

Description 

2015 – [79] 
Ronneberger 

et al. 

Cells 
 

Electron and 
optical 
microscopy  

U-net 
Segmentation of 
images and cell 
tracking  

The proposed network and training 
strategy can classify objects based 
on few annotated samples. Ranked 
1st place in the IBSI cell tracking 
challenge 2015. 

2016 – [90] 
Shin et al. 

LN, ILD CT 

Transfer 
Learning 
(AlexNet, 
GoogleNet, 
CifarNet 
CNNs) 

Thoraco-ab-
dominal lymph 
node (LN) detec-
tion and intersti-
tial lung disease 
(ILD) classification 

The authors studied different CNN 
architectures (i.e., they varied the 
number of parameters and layers), 
the influence of dataset scale and 
spatial image context, and whether 
transfer learning from pre-trained 
ImageNet could be useful. 

2016 – [91] 
Dou et al. 

Cerebral 
Microbleeds 

(CMBs) 
MRI 

Two-stage: 1) 
3D Fully-Con-
volutional net-
work (FCN), 2) 
3D CNN 

CMBs detection  

To reduce computational costs, the 
proposed framework used a 3D 
FCN to detect high probability can-
didates of CMBs, and then a 
trained 3D CNN to distinguish 
CMBs from mimics. 93.16% sensi-
tivity and a mean number of 2.74 
false positives per subject were 
achieved. 

2016 – [81] 
Setio et al. 

Pulmonary 
Cancer 

CT 

Two-stage: 1) 
Feature-engi-
neered candi-
date detector, 
2) Multi-view 
2D CNN for 
false positive 
reduction 

Candidate pulmo-
nary nodules de-
tection 

Volumetric images are firstly de-
composed into fixed triplanar 
views (sagittal, coronal, and axial 
planes), then each plane is pro-
cessed with 2D CNNs, and their 
output is combined to make the fi-
nal classification. The method 
reached nodule-detection sensitiv-
ity 85-90% and 1-4 false positive 
per scan. 

2017 – [92] 
Lekadir et al. 

Cardiovascular 
(carotid 
artery) 

US 

Four convolu-
tional and 
three fully 
connected lay-
ers  

Characterization 
of carotid plaque 
composition 

An automated technique, using 
CNNs, was proposed to discrimi-
nate between different plaque con-
stituents. Cross validation results 
showed 90% correlation with the 
clinical assessment. 

2017 – [93] 
Yu et al. 

Melanoma 
Dermoscopic 

Images 

Deep 
(38/50/101 
layers) fully 
convolutional 
residual net-
work (FCRN) 

Binary melanoma 
segmentation and 
classification 

First, residual learning is applied to 
cope with degradation and overfit-
ting problems. Then, a FCRN is con-
structed, integrating contextual in-
formation for skin lesion segmenta-
tion. Finally, the FCRN is integrated 
with other deep residual networks 
to form a two-stage framework for 
classification. The proposed frame-
work ranked 1st in classification and 
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2nd in segmentation, in IBSI chal-
lenge 2016 for skin lesion analysis 
towards melanoma detection.   

2017 – [94] 
Lao et al. 

Glioblastoma 
Multiforme 

(GBM) 
MRI 

CNN and 
Transfer 
Learning 

Segmentation of 
three tumor sub-
regions, including 
the necrosis area, 
the enhancement 
area and the 
edema area  

In this framework, both hand-
crafted features and deep features 
were extracted from multi-modal-
ity MR images, to construct a radio-
mic signature for prediction of 
overall survival in patients with 
GBM. Deep features were ex-
tracted from pre-trained CNN via 
transfer learning. Combining the 
signature with other risk factors, 
the combined model achieved 
about 70% predictive performance. 

2017 – [95] 
Oakden-

Rayner et al. 

Overall  
Survival 

CT 

CNN transfer 
learning (3 
convolutional 
and 1 fully 
connected lay-
ers) 

Tissue (muscle, 
body fat, aorta, 
vertebral column, 
epicardial fat, 
heart, lungs) 

This study demonstrates how CT 
images combined with computer-
aided systems can be used to pre-
dict longevity. 

2017 – [96] 
Zhu et al. 

Breast cancer DCE-MRI 

Transfer learn-
ing (Goog-
leNet, VGG-
Net, CIFAR) 

Breast tumor le-
sions 

Three different DL approaches - 
training from scratch, transfer 
learning and off-the-shelf deep fea-
tures – were applied to discrimi-
nate between different breast can-
cer subtypes. The results were vali-
dated using 10-fold cross-validation 
and area under the receiver oper-
ating characteristic (AUC). Off-the-
shelf deep features approach 
achieved the best AUC perfor-
mance of 0.65 (95% CI: [0.57,0.71]). 

2018 – [97] 
Chartsias et al. 

Cardiovascular MRI 
Various Net-
works 

Segmentation of 
cardiac anatomy 

The authors propose a method for 
disentangling medical images, en-
tailing anatomical information and 
properties related to imaging set-
ting. Furthermore, they demon-
strate the efficacy of their method 
in a semi-supervised myocardium 
segmentation task, achieving com-
parable performance to fully super-
vised networks, by using a fraction 
of labelled images for training. 

2020 – [98] 
McKinney  

et al. 
Breast Cancer X-ray 

Ensemble and 
transfer learn-
ing 

Breasts cancer 
Classification 

The authors propose an automated 
screening mammography system 
which surpasses human experts in 
predicting breast cancer. Curated 
on two large datasets - USA and UK 
- the system shows a reduction of 
5.7% and 1.2% in false positives, 
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and 9.4% and 2.7% in false nega-
tives, respectively. 

US: Ultrasound; MR: Magnetic Resonance; MRI: Magnetic Resonance Imaging; DCE-MRI: Dynamic Contrast En-
hancement MRI; CT: Computed Tomography; GBM: Glioblastoma Multiforme, CNN: Convolutional Neural Net-
work, LN: Lymph Node; ILD: Interstitial Lung Disease; CMBs: Cerebral Microbleeds, FCN: Fully-Convolutional Network; FCRN: 

Fully-Convolutional Residual Network; AUC: Area Under the ROC Curve; ROC: Receiver Operating Characteristic 
 

2.3 Data Storage, Management and Sharing in Medical Imaging 

Many challenges regarding storing, indexing and data interoperability in medical imaging arise when 
the data keeps growing. The mere production of large amount of data does not automatically permit the 
real exploitation of their intrinsic value. The poor curation and semantic annotation of data hinders the 

training process of machine learning algorithms and integrative analytics. Researchers involved in medical 
imaging do of course face many more challenges, such as storing, indexing, authorization and privacy 

issues, data sharing etc. To address these issues a collaboration between research institutions and clinical 

sites is essential, both at the local and national level. However, with our current knowledge several issues 
may already be addressed. 

First and foremost, the construction of big databases, such as cloud-based databases, is needed to 

support the massive production of data, as well as to enable the parallel computations of more intricate 
deep learning methods for data analytics. To ensure reliable databases the principles of the five Big Data 

“Vs” referring to variability, veracity, volume, velocity, and value must be followed [99]. The provision of 

metadata is also needed for the descriptive information of the acquired data, and image retrieval since 
the emergence of content-based image retrieval (CBIR) [100] systems enable now image retrieval by an-

alysing the content of the image instead of, e.g., tags and keywords. To foster multi-institutional collabo-

ration, guided principles, such as FAIR [101], must be followed, which establish a set of recommendations 
towards making metadata findable, accessible, interoperable, and reusable.  Regarding privacy issues, 
approaches such as K-anonymity [102], L-diversity [103] and T-closeness [104] have been proposed to 

accomplish the anonymization of medical imaging data. Furthermore, two initiatives QIBA [105] and IBSI 
[106], aim to reduce variability between different image devices, to standardise the extraction of image 

biomarkers from acquired imaging, to adopt standardised image biomarker nomenclature, to accelerate 
the development and adoption of hardware and software standards, and to provide a standardised pro-

cessing workflow for each imaging modality. Other disease specific initiatives include the Multi-Ethnic 
Study of Atherosclerosis (MESA), the UK biobank, the Cancer Imaging Archive (TCIA), the Cancer Genome 
Atlas (TCGA), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

In clinical sites it is necessary to establish an efficient clinical data repository (CDR). A CDR consolidates 

data from a variety of clinical sources, and thus allowing clinicians to have an integrated assessment of a 

single patient. CDR encapsulates data from electronic health (EHR) and medical records (MDR), radiology 

and pathology archives, tumor registries, biospecimen repositories etc. To ensure the proper classifica-
tion of the different entities, the adoption of clinical terminology coding (e.g., by SNOMED Clinical Terms®, 
or the International Classification of Diseases (ICD)) is useful. To ensure the interoperability of a CDR in 

case of multi-collaboration, it is necessary to rely on standards, such as those defined by the Integrating 
the Healthcare Enterprise (IHE), HL7 Fast Healthcare Interoperability Resources (FHIR), and Digital Imag-

ing and Communications in Medicine (DICOM). Furthermore, automated ETL (“extract, transform, and 
load”) interfaces and tools allow enterprises to gather data from multiple sources and consolidate it into 
a single, centralized location [107]. ETL also makes it possible for different types of data to work together 
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to analyse multi-nodal data in a systematic manner, guide personalized treatment and refine best prac-
tices. Finally, integrating software supporting data management process in clinical trials may also be es-
sential to automate all dimensions of the clinical data management process [108].  

2.4 Digital Pathology 

Single tissue and TMA images can provide important information about diseased tissue and disease 

mechanics at the sub-cellular scale. Nowadays microscope glass slides can be converted into digital slides 
with the aid of computer monitor (known as whole slide imaging (WSI), or virtual microscopy) [109], thus 
enabling to automate the process of analysing single tissue and TMA images and predicting diseases due 
to the success of machine learning algorithms. FDA approved in 2017 the use of a commercial digital 

pathology system in clinical settings [110]. 

2.4.1 Segmentation/Classification and Understanding 

In recent years there has been an increased interest in employing computer-aided decision support 
systems for the proper segmentation and classification of tissue images. However, image processing al-

gorithms must overcome several challenges to extract useful information from tissue images. WSI contain 
up to thousands of cells and nuclei, and combined by heterogeneity in structure across tissue specimens, 

they lead to huge datasets. Generalizing the task of nuclear characterization from different tissue pheno-

types poses another great challenge, since producing truth tables and IF-THEN datasets for algorithmic 
training is labour intensive and requires expert knowledge from pathologists [111]. Furthermore, other 

issues, such as tissue abnormalities across the same specimen, burden the interpretation process which 
is traditionally made in a subjective manner by multiple pathologists to reach consensus. 

Novel methods aim to develop content-based retrieval (CBR) systems for the classification of pathol-

ogy specimens.  These systems enable the automatic search through reference libraries of pathology im-

ages based on similar characteristics to a given query [112]. However, the large and high-dimensional 

datasets can render feature search inefficient. In view of that, hashing techniques, which directly search 

data without using index structure, can be used to make the data retrieving an efficient process [113]. 
Deep learning methods have also made it possible to automate many aspects of tissue image processing 

[114], presenting different methods depending on the malady and the disease site [115]. For example, DL 
classification methods decide on whether regions of tissue contain tumors, necrosis or immune cells, or 
if tissue regions area consent to specialist descriptions of tissue patterns. These and other elements like 

maps of the size, shape, and texture of nuclei in addition with different statistical features may form crit-

ical cancer biomarkers [116]. Recently, the most use of various tissue images is targeted on the interaction 
of cancer with the immune system. E.g., observations that tumor-infiltrating lymphocytes (TILs) are cor-
related with favourable clinical outcomes like longer disease-free survival in multiple cancer types [117], 

have led to the development of prognostic scores, such as the Immunoscore [118] and the TIL abundance 
(TILAB) score [119]. Moreover, a recent study [120] reports on a series of immunogenomic characteriza-

tions that include assessments such as total lymphocytic infiltrate, immune cell type fractions, immune 
gene expression signatures, human leukocyte antigen (HLA) type and expression, neoantigen prediction, 

T cell and B cell repertoire, and viral RNA expression. The objective evaluation of these biomarkers often 
poses new challenges. E.g., HLA category A tumor epithelium expression is tough to quantify by eye be-
cause of its concurrent presence on tumor and healthy tissue cells [121]. Efforts that tried to combine 
omics data with pathology images include various statistical and machine learning methods like consen-

sus clustering [122], linear classifier [123], LASSO regression modelling [124], and deep learning [125]. 
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Current tissue diagnostic studies use stained methods, the most common being hematoxylin and eosin 
(H&E), to provide detailed features of tissue. With the current imaging methods, digital pathology com-
bined with deep learning can formulate relationships unseen by human inspection. E.g., some efforts 
include the characterization of T cell repertoire in lung cancer [126], the correlation of TIL patterns with 

molecular data and the generation of tumor infiltrating lymphocyte maps [127].  A common challenge 
that arises in digital pathology is the batch effect, where tissue slides from different institutions show 
heterogeneous appearances because of differences in tissue preparation and staining protocols. How-
ever, this problem was tackled by the advent of unsupervised learning which allowed to transfer the dis-
criminative information obtained from the in domain to the target domain without requiring relabelling 

images at the target domain [128]. Finally, DL methods have also been used to detect cancer metastases 

based on tissue images [129]. 
 

2.4.2 Data Management, Querying and Visualization  

A common open-source system for data management, feature querying and visualization of whole 
slide images, is QuIP [130], which utilizes tools like caMicroscope viewer [131] to support the interactive 

visualization of images and their annotations, and FeatureScape - a visual analytic tool that supports in-
teractive exploration of feature and segmentation maps. Other open-source systems that carry out these 

or related tasks are QuPath [132], the Pathology Image Informatics Platform (PIIP) [133], the Digital Slide 
Archive (DSA) [134] and Cytomine [135].  Regarding the format of images, most of recent efforts have 
libraries like OpenSlide [136] or Bio-Formats [137] to navigate the different formats of plethora of work 

towards the adoption of a common format (probably that is DICOM format). To handle the ever-increas-
ing datasets and the massive computations to train machine learning algorithms and make predictions, 

there has been an increased awareness in the use of cloud computing [138], a cost-effective solution for 

large-scale computing. Software like QuIP includes cloud-based pipelines for tumor infiltrating lympho-
cyte analysis and nuclear segmentation.  

 

2.5 In Silico Models 

2.5.1 Medical Image Reconstruction and Visualization 

Medical image reconstruction refers to the 3D surface generation and visualization of different biolog-
ical components, such as arteries, vessels, organs etc. It also involves mesh generation techniques, fol-
lowed by rendering techniques used for completing the seamless boundary surface, smoothing and re-
finement. 3D image reconstruction and visualization enable applications in virtual surgery, neuro-inter-

ventions, coronary and aortic stenting etc. 
3D medical image reconstruction comprises the following stages: 1) Segmentation of 2D image slices 

and feature extraction, 2) reconstruction of 3D images, and 3) display of reconstructed images by a cor-

responding software. The segmentation process has been described in a previous section. Regarding the 
image reconstruction, note first that different image acquisition methods offer different image infor-
mation. E.g., CT images offer clear information on bone tissue, while MRI images offer clear information 
on soft tissue. Thus, to improve the effect of reconstruction, 2D images are first fused. Image fusion refers 
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to the transformation of different medical images and their spatial coordinates matching. By fusion com-
plementary information is obtained, which can improve the accuracy of clinical diagnosis and treatment. 
According to [139], the methods of image fusion can be divided into three broad categories: 

1. Spatial Domain: In this domain, two or more images are directly computed and added in spatial 

coordinates. This method involves logical computations, such as weighted average, pattern com-
putation and image algebraic calculations. 

2. Changing Domain: In this domain, an image is first modified and then fused. It includes algorithms 
such as the Laplacian Pyramid [140], wavelet change [141] etc. 

3. Intelligent Domain: Concerns the algorithms that try to simulate human being intelligent pro-

cessing method (i.e., Machine Learning and Deep Learning algorithms). 

The selection of applicable meshing and rendering techniques depends on the imaging modality and 
the corresponding biological element. The earlier reconstruction models were based on handcraft math-

ematical models. Surface rendering techniques can reconstruct 3D boundaries, like the geometry of ar-
teries and vessels through the iso-contours extracted from 2D image slices [142]. At present, non-uniform 
rational basis splines (NURBS) is an efficient mathematical model using B-splines to represent curves and 

surfaces such as aortic, carotid, cerebral and coronary arteries [143]. For the representation of bulk bio-

logical elements (e.g., tumors) volume rendering techniques are employed, such as ray-casting [144], light 

projection field displays [145] and frequency domain transformations (e.g., Fourier, wavelet frames 
[146]). Other successful handcraft models include the total variation model [147], the Perona-Malik dif-
fusion [148], shock-filters [149], nonlocal methods [150], block matching into 3D data arrays (BM3D) [151] 

and weighted nuclear norm minimization (WNNM) [152]. These models mostly have solid theoretical 
foundations and high interpretability. They perform reasonably well in practice, and some of them pre-

sent the state of the art for certain tasks. 
Since 1999, models consisting of data-driven learning strategies and handcraft modelling began to 

emerge [153]. Compared to purely handcrafted models, these models can better exploit the available 

data and outperform their corresponding no data-driven counterparts. Meanwhile, the handcrafted 

framework of the models grants certain interpretability and theoretical foundation to the models. Suc-
cessful examples include the method of optimal directions [154], the K-SVD [155], learning-based PDE 

design [156], data-driven tight frame [157], Adaframe [158], low-rank models [159], piecewise-smooth 
image models [160], and statistical models [161]. In 2012, with the advent of deep learning, various types 
of CNNs such as ResNet [162] and generative adversarial networks (GANs) [163] were introduced and 

applied in image re-constructions presenting the current state of the art.  
To reap the benefits of reconstruction process and make it available in the analysis of many patient 

specific cases, automating the process from segmentation to reconstruction is needed. However, this au-
tomation process is hindered due to different imaging modalities, varying element geometries, the quality 

of source images etc. Efficient workflows are also required to segment and reconstruct images. One way 

to overcome this challenge is the “raw-to-task” workflow as discussed in [153]. Raw-to-task deviates from 

the traditional workflow where the image analysis is separated into two stages: 1) reconstruction of a 

high-quality image from raw data, and 2) make a diagnosis based on the high-quality reconstructed image. 
Raw-to-task unifies the two afore-mentioned stages by connecting two CNNs together and conducting 
end-to-end training as demonstrated in Fig. 5. Such idea was first introduced in medical imaging by [164]. 
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Figure 5. CNN based workflows for medical image reconstruction and analysis [153]. 

 

2.5.2 In Silico Modelling of Malignant Tumors 

In silico modelling can infer reliable predictions on tumor dynamics, based on several mathematical 
foundations. Such computational models have been used to investigate the mechanisms that govern can-

cer progression and invasion, aiming to predict its future spatial and temporal status [165]. Recent efforts 
move towards multiscale approaches that link the interaction mechanisms at different biological scales 

[166], e.g., organs’ responses, blood dynamics, nutrient transport, and consumption etc., while they are 

still computationally efficient. Other efforts aim for the development of multi-compartment models 

which describe the behaviour (i.e., proliferation, migration, etc.) of different cell population [167, 168]. 
Recent models also try to incorporate the diffusion dynamics and concentration gradients of chemical 
substances, e.g. oxygen, glucose, drugs etc., and the influence of each cell expression resulting from in-

tracellular signalling pathways and gene expressions.  However so far, the capabilities of these models 
are limited by the inability to simulate cellular interactions (e.g. cell to cell adhesion) and sub-cellular 

chain processes [95], which determine cellular behaviour.  

2.5.3 Digital Twins 

A digital twin (DT) is a digital replica of a physical asset [169], trying to mimic its behaviour based on 
mathematical models. Thus, by real-time monitoring of the physical asset, DTs can evaluate different pa-

rameters of interest of its current state and even make predictions for the future. Although this concept 
initially emerged in industry and aerospace sector, its capabilities can also extend to healthcare.  

DT comprises a physical asset, its digital replica, and a bidirectional synchronized relation between the 
two. Other desirable components include 1) IoT devices2 for the collection of data from the physical asset, 

2) an integrated workflow to gather the data from different IoT devices, monitor the physical system and 

                                                           
2 IoT devices refer to anything that has a sensor attached to it and can transmit data with the help of the internet. 
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provide input to machine learning methods to make predictions and give feedback to guarantee the cor-
rect behavior for the physical system, 3) big data analysis and storage tools, 4) protocols to ensure the 
security and fidelity of the data, and 5) the standardization of evaluation tests to ensure, e.g., the accuracy 
and robustness of the model.  

DT may be a useful tool for personalized medicine. FDA deemed medication ineffective for 38-75% of 
patients with common maladies [170], resulting in patient suffering and an increase in healthcare costs. 
Conventional medication relies on several biomarkers and its limited effectiveness often emanates from 
the altered interactions of genes that differ among patients with the same diagnosis.  DTs can help to 
increase specificity of an administrated drug and refine methods to test its effectiveness more quickly and 

economically [171].  Swedish Digital Twin Consortium (SDTC) [172] is an initiative moving towards this 

direction. SDTC aims to 1) construct many digital twins of network models of all molecular, phenotypic, 
and other factors relative to disease dynamics in each individual, and 2) to computationally test with 

different drugs those digital twins to identify the best performing drug for each patient (Fig. 6). Recent 
work [173] presents methods and algorithms aiming at synthesizing optimal personalized treatments by 
means of In Silico Clinical Trials (ISCT), by exploiting quantitative models of the physiology and drugs Phar-

macokinetics/Pharmacodynamics (PKPD) of interest, and clinical measurements on human patients from 

which they defined their digital twins. Furthermore, digital twins of organs, such as the liver [174], the 

heart [175] and kidney [176], have been constructed which combine various functional measurements 
with multi-scale modelling. Finally, the DT concept is also proposed in clinical healthcare for trauma man-
agement (i.e., procedures, administered drugs, diagnostics reports, vital signs etc.) [169], as well as for 

cancer preclinical investigation [177]. 
 

 

Figure 6. The digital twin concept for personalized medicine: A. An individual patient has a local sign of disease 
(red). B. A digital twin of this patient is constructed in unlimited copies, based on computational network models 
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of thousands of disease-relevant variables. C. Each twin is computationally treated with one or more of the thou-
sands of drugs. This results in digital cure of one patient (green). D. The drug that has the best effect on the digital 

twin is selected for treatment of the patient [171]. 

2.6 Concluding Remarks & Future Directions 

In this section we first introduced the image acquisition techniques from the most common, routine 

techniques (e.g., MRI, CT) to the new forthcoming techniques (e.g., Ultrasound enriched with bubbles and 

Super-resolution microscopy techniques) applied in medical imaging. Next, we described the phase of 
image post-processing following the image acquisition. We said that this phase involves the segmentation 
and classification of images. We mentioned the most common, and yet powerful techniques in image 
segmentation, including the machine and deep learning approaches. Next, we presented the stages of 
classification process, as well as the techniques applied in each stage. In fact, image post-processing is 

more complicated than the way it is covered here, though we highlighted the basic and most prevalent 
concepts, as well as the current state-of-the-art algorithms and trends. In the following, we mentioned 

the challenges that arise due to the large volume of data produced and the proposed solutions of imaging 

informatics community. We discussed the contribution of imaging informatics to the advent of digital 
pathology, describing the post-processing of tissue images, the interpretation of the results for proper 
diagnostics, and the platforms that allow for data management, visualization and processing in this field. 

Then, we presented the most profound applications of imaging informatics in healthcare, including the 
digital 3D reconstruction and visualization of different anatomical sites, and new forthcoming concepts 

such as the in-silico modeling of malignant tumors and the concept of digital twins.  
As regards the future directions, the adoption of GPU (graphics processing unit) in medical physics 

seems to emerge [178, 179]. Although originally designed for accelerating the production of computer 
graphics, the GPU has emerged as a versatile platform for running massively parallel computations. The 

introduction of new multi-core architectures of the GPU and the advent of programmable GPUs by the 
non-expert, along with computer-oriented GPU interfaces lead to advancements in medical imaging that 

allow, e.g., the real time reconstruction of an image or the ability to handle large data sets from multiple 
IoT devices, underpinning the concept of Digital Twins.  

Regarding data management, the ever-increasing datasets of imaging data, complemented by EMR 
and EHR, -omics, and other physiological data will pose challenges like data fidelity and integration from 
various imaging sources, querying, data analysis, storage, interoperability, security and privacy issues. 

Currently, deep learning methods have a dominant role in image processing for presenting high accuracy 
in classification/segmentation tasks and a reasonably good performance at producing synthetic images 
from different acquisition techniques. The advent of GANs, since they were first devised in 2014 by Good-
fellow et al. [163], allow now the models to train on unlabeled data, learn messy and complicated distri-

butions of the data, and generate data that is similar to real data. In the future efforts like fine-tuning and 

transfer learning aim also to create methods that rely on smaller datasets and still generalize well. There 

is an ongoing interest in advancing DL methods across a wide spectrum of healthcare data, from EHR 
[180], genomics [181] and other physiological parameters [182]. Other emerging trends include natural 
language data processing [183], where computers analyze large amounts of natural language data and 
thus enable applications such as verbal querying. 

Emerging radiogenomics investigate the association between various imaging phenotypes and -omics 

data, e.g. a tumor’s texture and size characteristics in terms of molecular profiling, and thus providing 

new insights for disease aetiology, dynamics, and response to a treatment. 
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Finally, to accelerate new knowledge discovery, there must be more initiatives that include multi-in-
stitutional collaboration and broader networks of research groups, standardization of workflows, open-
access datasets from well-annotated large cohorts, reproducible and well explicable research studies.      
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3. The State-of-the Art in Bioinformatics 

Bioinformatics is an interdisciplinary field that deploys methods and software tools for a better under-
standing of biological data, especially when the data sets are large and complex. Bioinformatics combines 

biology, information engineering, computer science, mathematics, and statistics to analyse and interpret 
the biological data. Some common uses of bioinformatics involve the identification of candidate genes 
and single nucleotide poly-morphisms (SNPs), with the aim of better understanding the genetic basis of a 
disease, unique adaptations and differences between populations. In a lesser extent, bioinformatics also 

tries to comprehend the organizational principles within nucleic acid and protein sequences, named pro-

teomics. 

This overview presents the most current methods and platforms that are used for sequencing, also 

referred as Next Generation Sequencing, the genome editing including the most current state-of-the-art 
technologies, called CRISPR and topics related with Translational Bioinformatics (TBI), which is focused on 
the convergence of bioinformatics with clinical healthcare. Finally, a summary of the national genomic 

initiatives is presented, and the ongoing challenges and the future landscape of bioinformatics are dis-
cussed. 

 

3.1 Methods in Next-Generation Sequencing 

Next generation sequencing (NGS), or massively parallel sequencing, refers to any DNA high-through-

put sequencing technology which has revolutionised genomic research, in the sense that an entire human 
genome can be sequenced within a single day [1]. A typical workflow of an NGS platform includes four 

steps: 1) Library preparation, 2) Sequencing, 3) Reconstruction and 4) Data Analysis. 

3.1.1 Library Preparation 

Library preparation is an important procedure for the success of the NGS workflow. This step involves 
the preparation of DNA or RNA samples to be compatible with a sequencer. The sequencing libraries are 

generated by fragmenting DNA, adding specialized adapters to both ends. Depending on the method ap-
plied, these adapters usually offer complementary strands that allow the DNA fragments to bind to the 

flow cell. To be more resource efficient, multiple libraries can be combined and sequenced in the same 
run—a process known as multiplexing. During adapter ligation, unique index sequences are added to each 
library. These unique sequences are used to discriminate between the libraries during data analysis. Alt-

hough it depends on application (e.g., gene expression or DNA methylation analysis), the fundamental 
steps of library preparation include: 

 

1. DNA fragmentation/target selection. In order to separate DNA into smaller pieces, the DNA may be 
fragmented using physical (e.g., sonication [2] or hydrodynamic shearing [3]), enzymatic (e.g., trans-
posase [4], DNase I [5], or any other restriction endonuclease [6]) or chemical methods (such as 
heating and the divalent metal cation method [7]). These libraries are referred as fragment libraries.  

2. Adapter sequences are annealed to the 5’ and the 3’ end of the fragmented or amplicon DNA. There 
are two different adapter sequences that can anneal to the DNA fragments and either the 5’ or 3’ 
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orientation. One adapter sequence contains the primer annealing site for the sequencing primer 
and the second adapter sequence is used to anchor the DNA fragment to a surface for sequencing. 

3. The appropriate size selection is needed for the sequencing run. There are two commonly used size 
selection methods. The first one is the gel electrophoresis method [8], where adapter library frag-

ments are run on a gel to separate the fragments by size. The band which corresponds to the size of 
interest is collected. The second method used is the bead-based method [9], where magnetic beads 
are utilized with different concentrations to isolate the DNA fragment sizes of interest. 

4. Library quantification which refers to various methods for determining the number of nucleic acid 
molecules present in the given library. The most common methods include qPCR, fluorimetry, Spec-

trophotometry, and electrophoretic methods [10].  

 

3.1.2 Sequencing 

Generally, the methods of sequencing are classified as short-read (SRS) and long-read (LRS) sequenc-

ing. Using next-generation SRS, DNA is divided into short fragments that are amplified (copied) and then 
sequenced to produce ’reads’. Bioinformatic techniques are applied to piece together the reads into a 

continuous genomic sequence. The typical range of SRS systems is 75-500 base pairs (bp). On the other 
hand, as the name implies, long-read sequencing refers to methods capable of sequencing longer strands 

of DNA by reading single DNA molecules. The typical read lengths for LRS are 10,000 - 100,000bp, while 
some LRS platforms have reported to produce sequence reads of 882,000bp [11] and other of over 
2,000,000bp [12]. 

3.1.2.1  Short-read sequencing 

According to [13], short-read sequencing approaches are divided into two categories: sequencing by 

ligation (SBL) and sequencing by synthesis (SBS). 

1. Sequencing by ligation: SBL approaches include the hybridization and ligation of labelled probe and 

anchor sequences to a DNA strand. The probes encode one or two known bases and a series of degener-

ate or universal bases, driving complementary binding between the probe and template, whereas the 
anchor fragment encodes a known sequence that is complementary to an adapter sequence and provides 

a site to initiate ligation. After ligation, the template is imaged and the known base or bases in the probe 
are identified. A new cycle begins after complete removal of the anchor–probe complex or through cleav-
age to remove the fluorophore and to regenerate the ligation site. During the cycles, single-nucleotide 

offsets are introduced to ensure every base in the template strand is sequenced. Commercial platforms 
such as SOLiD by ThermoFisher and DNBSEQ-G400 by MGI (a subsidiary of BGI Group) perform short-read 
DNA sequencing.  

2. Sequencing by synthesis: SBS describes numerous DNA-polymerase-dependent methods. These ap-
proaches can be classified either as cyclic reversible termination (CRT) or as single-nucleotide addition 
(SNA) - also called pyrosequencing. 

(a) CRT approaches are defined by their use of terminator molecules that are like those used in Sanger 

sequencing, in which the ribose 3’ - OH group is blocked, preventing elongation [14]. In the beginning of 
the process, a DNA template is primed by a sequence that is complementary to an adapter region and 
initiates polymerase binding to this double-stranded DNA (dsDNA) region. During each cycle, a mixture of 
all four individually labelled and 3’ -blocked deoxynucleotides (dNTPs) are added. After the integration of 
a single dNTP to each elongating complementary strand, unbound dNTPs are removed, and the surface is 
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imaged to identify which dNTP was incorporated at each cluster. Then, the fluorophore and blocking 
group can be removed and a new cycle can start. Currently, the Illumina CRT system accounts for the 
largest market share for sequencing instruments in comparison with other platforms. Illumina’s suite of 
instruments for short-read sequencing varies from small, low-throughput benchtop units to large ultra-

high throughput instruments dedicated to population-level whole-genome sequencing (WGS). dNTP iden-
tification is achieved through total internal reflection fluorescence (TIRF) microscopy using either two or 
four laser channels. In most Illumina platforms, each dNTP is bound to a single fluorophore that is specific 
to that base type and requires four different imaging channels, whereas the NextSeq 550 and Mini-Seq 
systems use a two-fluorophore system [15]. 

(b) SNA/Pyrosequencing: SNA approaches rely on a single signal to mark the incorporation of a dNTP 

into an elongating strand. Thus, each of the four nucleotides must be added iteratively to a sequencing 
reaction to ensure that only one dNTP is responsible for the signal. Furthermore, this does not require 

the dNTPs to be blocked, as the absence of the next nucleotide in the sequencing reaction prevents elon-
gation.  In the early stage of pyrosequencing [16], as a dNTP is incorporated into a strand, an enzymatic 
cascade occurs, resulting in a bioluminescence signal. Each burst of light, detected by a charge-coupled 

device (CCD) camera, can be attributed to the incorporation of one or more identical dNTPs at a particular 

bead. However, platforms such as the Ion Torrent, instead of using an enzymatic cascade to generate a 

signal, they detect the H+ ions that are released as each dNTP is incorporated. The change in pH is detected 
by an integrated complementary metal-oxide-semiconductor (CMOS) and an ion-sensitive field-effect 
transistor (ISFET) [17]. 

3.1.2.2  Long-read sequencing 

Long-read sequencing offers reads of more than several kilobases, allowing the resolution of large 
structural features. Such long reads can connect complex or repetitive regions with a single continuous 

read, making clearer the positions or size of genomic elements. There are two dominant types of long-
read technologies, which refer to single-molecule long-read sequencing approaches, and synthetic ap-

proaches which depend on existing short read technologies to construct long reads in silico. 

1. Single-molecule long-read sequencing: The single-molecule approaches differ from short-read ap-

proaches in that they neither rely on a clonal population of amplified DNA fragments to generate detect-
able signal, nor do they require chemical cycling for each dNTP added. The most widely long-read plat-

forms are the single-molecule real-time (SMRT) sequencing approach used by Pacific Biosciences (PacBio) 
and the nanopore sequencing approach from Oxford Nanopore Technologies (ONT). 

(a) SMRT/PacBio: The technology used by PacBio is based on the natural process that occurs with the 
division of cells. Prior to division, DNA is replicated by enzymes called DNA polymerases which efficiently 

duplicate entire genomes by reading the DNA and sequentially building a complementary strand with 

matching nucleotides. PacBio utilizes the power of polymerase as a sequencing engine by ‘eavesdropping’ 

on it, while it works to replicate DNA. This approach is enabled by two technologies. The first is the phos-
phor-linked nucleotides to visualize polymerase activity. In contrast to other sequencing approaches, in 
SMRT phospho-linked nucleotides carry their fluorescent label on the terminal phosphate rather than the 
base. Through this innovation the enzyme cleaves away the fluorescent label as part of the incorporation 
process leaving behind a completely natural strand of the DNA. This enables to exploit the inherent prop-

erties of the DNA polymerase, including high speed, long read length and high fidelity. The second tech-
nology refers to a nanophotonic visualization chamber and is called the zero-mode wave guide (ZMW). 

The ZMW is a cylindrical metallic chamber approximately 70 nm wide that is illuminated through its glass 
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support creating an extremely small detection volume of 20 zeptoliter. ZMW technology enables the ob-
servation of the individual molecules against the required background of labelled nucleotides, maintain-
ing the same time high signal-to-noise ratio. Nucleotides diffuse in and out of the ZMW in microseconds. 
When the polymerase meets the correct nucleotide, it takes several milliseconds to incorporate it, during 

which time its fluorescent label is excited emitting light that is captured by a sensitive detector. After 
incorporation the fluorescent label is cleaved off and diffuses away. The whole process repeats, generat-
ing sequential bursts of light corresponding to the different nucleotides. These are recorded by building 
the DNA sequence and reading it at a rate of 10bp per second [18]. SMRT by PacBio provides two different 
sequencing modes: 1) the Continuous Long Read (CLR) sequencing and 2) the Circular Consensus Sequenc-

ing (CCS). CLR sequencing is preferred to make long reads of > 50kb, though with a reduced accuracy of 

(75–90%). On the other hand, CCS enables high read lengths of 10-20 kb with average sequence identity 
greater than 99% from a single molecule, also known as single molecule high-fidelity HiFi sequencing. 

(b) Nanopore sequencing/ONT: In 2014, MinION - the first consumer product of ONT — became com-
mercially available. In comparison with other platforms, nanopore sequencers do not monitor incorpora-
tions or hybridizations of nucleotides guided by a template DNA strand. This technology is based on a 

nanopore that is inserted into an electrically resistant membrane created from synthetic polymers. A po-

tential is applied across the membrane resulting in a current flowing through the aperture at the na-

nopore. ONT utilizes a strand sequencing method in which intact DNA strands are processed by the na-
nopores and analyzed in real time. The DNA strands to be sequenced are mixed with copies of a specific 
enzyme and as the DNA enzyme complex approaches the nanopore, the DNA is pulled through the aper-

ture of the nanopore. The enzyme binds to a single-stranded leader at the end of the dsDNA template 
and unzips the double strand, feeding it to the nanopore. As the DNA moves through the pore, different 

k-mer combinations of nucleotides create a characteristic disruption in the electrical current. The instru-
ment has more than 1.000 signals, one for each possible k-mer, especially when modified bases present 

on native DNA are taken into consideration [19]. Furthermore, the speed of the enzyme can be controlled 
(e.g., via temperature regulation). The faster it runs the more data is yielded per second, although there 

is a greater possibility for detection loss. By preparing the DNA to have a hairpin structure at the opposite 
end, the system can read both strands of the double stranded DNA in one continuous read. PromethION, 

the latest instrument of ONT, includes 48 flow cells per device, each with 3000 pores (meaning 144,000 
pores in total), with each pore running at 500bp/second. 

2. Synthetic long-reads: The synthetic approaches do not generate actual long-reads, but they are 

closer to library preparation approach that leverages ‘’barcodes’’ to allow computational assembly of a 
larger fragment. These approaches separate large DNA fragments into either microtitre wells or an emul-
sion such that very few molecules exist in each partition. Within each partition the template fragments 
are sheared and barcoded. Then, the fragments are sequenced on existing short-read instrumentation, in 

which data are split by barcode and reassembled with the knowledge that fragments sharing barcodes 

are derived from the same original large fragment. Synthetic barcoded reads provide an association 
among small fragments extracted from a larger one. By separating the fragments, repetitive or compli-

cated regions can be isolated, allowing each to be assembled locally. This prevents unresolvable branch 
points in the assemblies, which lead to breaks (gaps) and shorter assembled contiguous sequences.  
Moleculo Inc. which was acquired by Illumina in 2013 and 10X Genomics, both utilize platforms that gen-

erate synthetic long reads.  
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3.1.3 Reconstruction 

As mentioned above, DNA sequencing is performed on fragments of the DNA strand. After the nucle-
otide identification of the fragments, these must be recombined in the ‘correct’ order to match the orig-

inal DNA strand. From the use of amplification methods many DNA fragments are produced, thus the core 

idea to solve the reconstruction problem is to use overlapping reads of the fragments. The early algo-
rithms for the reconstruction task were the so-called greedy algorithms (i.e., algorithms that make a se-
quence of choices, each choice being in some way the best available at that time [20]), which align the 
DNA fragments based on a similarity score [21]. Despite their simplicity, greedy algorithms do not provide 
accurate results for large scale combinatorial problems, and other problems that arise due to the se-

quence procedure (e.g., erroneous reads) and the intrinsic nature of the DNA (e.g., repetitive similar DNA 
motifs in a single DNA strand) make these algorithms inefficient and only applicable to certain cases. 

Other algorithms that have been proposed are the following: 

1. Hamiltonian path/TSP: The string reconstruction problem can be approached by defining a directed 

graph G1, where every occurrence of a 𝑘-mer in the spectrum is represented by a node in the graph. 

Every pair of nodes 𝑥, 𝑦 belonging to the whole set 𝑘-mers, is connected by a directed edge 𝑒 from 𝑥 

to 𝑦 if the 𝑘 − 1  suffix of 𝑥 is identical to the 𝑘 − 1 prefix of 𝑦. For instance, {GTC, TCC} are 3-mers being 

connected by a directed edge, since the 2-mer suffix of GTC equals the 2-mer prefix of TCC. Joining the 

two 𝑘-mers into a sequence relates to a cost. The cost of joining two 𝑘-mers is equal to 𝑘 minus the 

number of nucleotides that overlap in these 𝑘-mers. For instance, two 𝑘-mers CCATC and TCTAG may 
overlap on two nucleotides and create a longer sequence CCATCTAG. Consequently, a cost of joining them 

is equal to 3. The goal is to visit every node in G1 exactly only once and return to the starting point in such 

a way that a sum of costs of traversed edges included in the G1 cycle is at its minimum, reducing the string 

reconstruction problem to the known Hamiltonian path or Traveling Salesman Problem (TSP) [22]. How-

ever, this problem is known to be NP-hard (i.e., its computational cost runs exponentially as the size of 
the problem increases), thus unlikely to admit a polynomial–time algorithm. 

2.  Eulerian path approach: Pevzner et al. [23] proposed another approach, which reduces the recon-

struction problem to the well-known Eulerian path problem, which admits a simple linear-time algorithm. 

The idea is to construct a graph G2 (Pevzner’s graph) whose edges (and not the nodes as in the Hamilto-

nian path problem) correspond to 𝑘-mers, and to find a path in the graph that visits every edge only once. 
Here the nodes are the full set of (𝑘 − 1) − 𝑚𝑒𝑟 appearing in the spectrum. Based on the defined graph 
G2, the problem is translated in finding a path that visits all edges on G2. The solution is not necessarily 

unique because it is possible to detect a Eulerian cycle, which creates multiple ambiguous solutions. Mul-
tiple (alternative) solutions are manifested as branches in the graph, and unless the number of branches 
is very small, there is no good way to determine the correct sequence.  

3. De Bruijn graph: The de Bruijn graph [24] is constructed easily by extending the idea proposed by 
Pevzner, by merging all identically labelled nodes into a single node, without changing the number of 
in/out edges. Then a solution to this problem leads to the Eulerian path approach, although with less 
ambiguity due to the problem of different root branches. However, again there may be multiple Eulerian 

paths in the Bruijin graph. A more efficient algorithm that was proposed to tackle this problem, is the 
paired information Bruijn graph [25]. This algorithm is based on the paired-read sequencing technology, 

where pair of reads are generated in both ends of each fragment of the genome. So now instead of talking 
about reads individually, we are talking about pair of reads, separated by a distance called insert size. 
Thus, given two 𝑘 − 𝑚𝑒𝑟𝑠, if they are apart at a fixed distance in the genome, they are called a paired 
𝑘 − 𝑚𝑒𝑟. The problem of constructing the genome is not solved by 𝑘 − 𝑚𝑒𝑟 composition, but by paired 
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𝑘 − 𝑚𝑒𝑟 composition. Thus, in the paired de Bruijn graph every paired 𝑘 − 𝑚𝑒𝑟 is demonstrated as an 
edge between its paired prefix and paired suffix. Again, all identical nodes are merged, and the genome 
reconstruction follows the Eulerian path. Note that what differs from the traditional de Bruijn graph is 
that in the new form, nodes are labelled by pair of (𝑘 − 1) − 𝑚𝑒𝑟𝑠, while in the traditional form, nodes 

are labelled by just individual (𝑘 − 1) − 𝑚𝑒𝑟𝑠. Due to this difference in the labelling, the paired de Bruijn 
graph is obtained by fewer merging, thus making it simpler. 

3.1.4 Data Analysis 

In bioinformatics, genomic data may have different types of DNA, RNA, proteins, and epigenetic marks. 
The goal of data analysis is usually to improve identification of differentially expressed genes, disease 
associated single nucleotide polymorphisms (SNPs) or differentially methylated site. As stated in [26], in 
data analytics it is possible to integrate the same type of genomic data across multiple studies (horizontal 

integration) or integrate different types of genomic data in the same set of samples (vertical integration). 
Here only horizontal data analytics are discussed, in terms of the following steps: 

1. Data collection and pre-processing: Firstly, a systematic search is executed to determine inclu-
sion/exclusion criteria for identifying, annotating, and preparing datasets for meta-analysis. This process 

includes special data management consideration and pre-processing protocol. 

2. Statistical methods for meta-analysis: A variety of traditional meta-analysis methods have been ap-

plied to genomic applications. There are two main categories: combine p-values and combine effect sizes. 
The first category refers to Fisher’s method, Stouffer’s method, and modified versions of them. The sec-
ond category includes fixed, random, or mixed effects models [27]. A comprehensive review for meta-

analysis methods can be found in [28]. 

3. Targeted biological objectives and hypothesis setting: An important prerequisite behind genomic 

meta-analysis is to identify the targeted biological objective and the underlying hypothesis setting. Tseng 

et al. [29] demonstrated two hypotheses settings (HSA and HSB) to detect biomarkers differentially ex-
pressed (or SNPs associated to disease) in “all studies” or “one or more studies”, respectively. Although 
HSA is more often the desired biological objective, HSB can be considered when study heterogeneity is 

expected and of research interest (e.g., when studies utilize different tissues). These two hypothesis set-
tings are narrowly related to traditional union-intersection test (UIT) [30] and intersection-union test (IUT) 

[31]. Later, Song & Tseng [32] proposed a general class of order statistics of p-values and discussed a 
robust hypothesis setting to relax HSA from the stringent requirement of differential expression in “all 

studies” to “most studies”.  A comparative study between different methods and hypothesis settings for 
transcriptomic meta-analysis is done in [33]. 

4. Cross-study heterogeneity: Although the major aim of meta-analysis is to enhance statistical power 

by combining consensus information, the heterogeneities across studies are also often of importance.  
Heterogeneity is often identified in genomic studies due to different cohorts, experimental protocols, 
platforms, or tissues that are utilized to generate the data. In the HSB (IUT) hypothesis setting, adaptively 

weighted concept (a.k.a. subset-based approach) and meta-Lasso approach have been deployed to detect 

gene-specific subset of studies that contain differential expression [34] or disease association information 
[35].  
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3.2 Genome Editing with CRISPR3 

Genome editing is the use of various technologies to make permanent changes in the genomic DNA 
sequence of a cell or organism. Early methods used zinc finger nucleases (ZFNs) or transcription activator-

like effector nucleases (TALENs), which are expensive, slow, and difficult to implement in comparison to 
most current state-of-the-art technologies based on CRISPR (Clustered Regularly Interspaced Short Palin-

dromic Repeats). 
CRISPR genome editing is based on a natural immune process used by bacteria to defend themselves 

against invading viruses. CRISPR systems can recognize and cleave complementary DNA sequences, al-
lowing bacteria to remember and destroy viral invaders. In 2013, researchers demonstrated that they 

could adapt CRISPR/Cas-dependent genome editing for use in mammalian cells [36]. Cas enzymes are part 
of a bacterial immune system that incorporates short, viral DNA sequences into the bacterial genome. 

This is a complicated process that is not entirely understood [37]. What is well characterized is that these 

viral sequences are found at regular intervals, short distances from one to each other in the bacterial 
genome. The bacterial DNA between these sequences has palindromic repeating patterns, hence the 
name, clustered regularly inter-spaced short palindromic repeats. The incorporated viral DNA sequences 

can be translated into guide RNA (gRNA) when needed—that is, if the same kind of virus tries to infect 
the bacterium again, the CRISPR system can cut the invading viral DNA through use of the gRNA and Cas 
enzyme. This last step of the bacterial immune process, when the gRNA is combined with Cas and cleaves 

the target DNA, is what has been adopted for genome editing in laboratories. 
The most common applications of CRISPR include: 

• Screening: Screening identifies a small number of genes (out of the whole genome) involved in a 
specific physiological effect. Most CRISPR screening is done in cell culture, although some methods have 

been devised for use in animal models. In CRISPR screening, scientists usually knock out every gene in the 

genome that could be important, knocking out only one gene per cell. During this process, some cells die, 

but others survive and become the predominant cell types. Then, the scientists do next generation se-
quencing (NGS) on the surviving cells to find out which sequences are still present. 

• Gene silencing: Almost immediately after the discovery of CRISPR genome editing, some researchers 
produced a mutated Cas9 that could not cut DNA. This catalytically inactive enzyme, dCas9 (dead Cas9), 

could still be targeted to a specific genomic site. Interestingly, simply by binding to a target site, dCas9 
was able to inactivate gene transcription at that site by preventing binding of the cellular transcription 
machinery to the gene [38]. Without transcription, the relevant protein is not produced, and the gene is 

effectively silenced until the cell naturally eliminates the dCas9 enzyme. This approach, whereby CRISPR 
is used to temporarily silence a gene without cutting the DNA, was named CRISPR interference (CRISPRi). 

• Gene activation: CRISPRa is a category of methods that use the same dead Cas9 mutant (dCas9) as 

CRISPRi. However, in CRISPRa, the RNP (ribonucleoprotein, i.e., a complex of Cas enzyme and guide RNA) 

is used to carry transcriptional activators, which overcome the transcription-blocking effect caused by 
dCas9, and turn on transcription at target promoter regions within the target gene. Some CRISPRa sys-
tems use activating proteins connected to the gRNA itself rather than to the Cas enzyme [39]. 

• Nuclear organization and epigenetic modifications: You can use fluorescently labelled CRISPR com-
ponents to help study nuclear organization, enabling easy visualization of target genes within the nucleus. 

Numerous systems using modifications of CRISPR components have been designed for this purpose [40]. 
In the nuclei of cells, DNA is usually tightly wound around histone proteins. The term “epigenetics” refers 
to posttranslational modifications of these histone proteins, as well as methylation of DNA itself. These 

                                                           
3 This section is based on the content of “The CRISPR basics handbook.”, © 2020 Integrated DNA Technologies. 
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modifications affect nuclear and DNA behaviour and are regulated by many enzymes. CRISPR technology 
can be used to direct such enzymes to particular sites in the genome to regulate epigenetic modifications 
[41]. 

3.3 Translational Bioinformatics 

Translational bioinformatics (TBI) is a multi-disciplinary and rapidly emerging field that involves the 

deployment of technologies that translate basic molecular, cellular, genetic, and clinical data into 
knowledge and medical tools. TBI applies novel methods to the storage, analysis, and interpretation of a 
massive volume of genetics, genomics, multi-omics, and clinical data, including diagnoses, medications, 
laboratory measurements, imaging, and clinical notes. TBI links the gap between experimental research 

and real-world applications to human health. 

3.3.1 Genomic Data Resources 

Reference datasets enable comparative analyses with parallel data from disease-centric studies to de-
termine variants and processes that are associated to disease. This results in a better understanding of 

the fundamental mechanisms that occur through a plethora of diseases, an improved ability to predict 
the treatments that work best for specific patients and improved approaches such as genome-based strat-

egies for the early detection, diagnosis, and treatment of the disease. 

A variety of publicly available genomic data deposited in different databases are depicted in Table 4 
[26]. Among the biggest biotechnology information centers are the European Bioinformatics Institute 

(EMBL-EBI) and the National Center for Biotechnology Information (NCBI). The results of Genome-Wide 
Association Studies (GWAS), including DNA genotype and phenotype data, usually populate dbGAP, which 

is hosted by NCBI. Since genotyping information can theoretically identify the patient ID, a secure access 

application through dbGAP is necessary to protect the patients’ privacy. Gene expression and epigenetic 

data are often deposited in NCBI GEO (Gene Expression Omnibus) or ArrayExpress. The NCBI SRA (Se-

quence Read Archive) is a central location for storing sequencing data. The SRA Toolkit provides easy 

solutions for downloading large files of sequencing data. In addition, there are also growing data re-
sources from large consortium projects. The Cancer Genome Atlas (TCGA) allows users to download open 

access data, including de-identified data of clinical and demographic features, mRNA or microRNA expres-
sion, copy number alterations, protein or phosphoprotein abundance and DNA methylation. Another 
large consortium that gathers genomic data from different types of cancers is the International Cancer 

Genome Consortium (ICGC). Moreover, some other well-known genomic data resources are the Roadmap 

Epigenomics Project, which focuses on genome-wide epigenetic marks; Genotype-Tissue Expression pro-
ject (GTEx), which produces RNA-seq data from different human tissues; ENCODE (Encyclopedia Of DNA 
Elements) project, which intends to study the function of genes and the elements that regulate genes 

throughout the genome. Many datasets are publicly available but not well-annotated; that makes them 
difficult for use. Databases with standardized uploading protocols are typically easier to use. Finally, se-

quencing, or genotyping data of human samples often involve specific issues as far as privacy and legal 
consent are concerned, and hence their datasets need protection through standardized protocols. 
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Table 3. Genomic data resources. 

Resource URL Description 
dbGAP www.ncbi.nlm.nih.gov/gap DNA genotype and phenotype data 

ArrayExpress www.ebi.ac.uk/arrayexpress Gene expression and epigenetic marks 

GEO www.ncbi.nlm.nih.gov/geo Gene expression and epigenetic marks 

SRA www.ncbi.nlm.nih.gov/sra Sequencing data 

TCGA tcga-data.nci.nih.gov/tcga Multiple types of open access genomic data 

ICGC https://dcc.icgc.org/ Multiple types of genomic data 

Roadmap www.roadmapepigenomics.org Epigenomics data 

GTEx www.gtexportal.org/home RNA-seq from different tissues 

ENCODE www.encodeproject.org Epigenetic and gene expression data 

 

3.3.2 Genomic Annotation Databases 

A DNA sequence has much more value if it is possible to annotate the different features like promoters, 
exons, introns, transposons, etc. The annotation of those regions in a sequence is called structural anno-

tation and is usually accompanied by a further functional annotation that will demonstrate the functions 
for these different regions.  

The most significant annotation for most genomic studies is the reference genome, with the most 

current release of human reference genome to be GRCh38.p13 (released on 2019/02/28 by Genome Ref-
erence Consortium). Reference genomes can be accessed online at Ensembl or the UCSC Genome 

Browser, among other online locations. At the DNA level, NCBI dbSNP (Single Nucleotide Polymorphism 

Database) offers a concise annotation of known SNPs, extracted by various sequencing/genotyping pro-

jects, such as the 1000 Genomes Project. Regarding the gene structure, Ensembl’s Genebuild workflow 

automatically annotates genes based on existing evidence of mRNA and proteins in public databases [42]. 

The GENCODE annotation relates the automatic annotation from Ensembl and manual annotation from 
the HAVANA (Human and Vertebrate Analysis and Annotation) group [43]. Furthermore, Gene Ontology 

(GO) database provides ontology terms for gene functions in three categories: biological process, molec-
ular function, and cellular component [44]. There are also many databases for pathway annotations, such 

as KEGG, PathBank, Reactome, WikiPathways, Pathway Commons and BioCyc. Table 5 summarizes the 

abovementioned annotation databases. There are also some other useful databases to systematically 
catalog existing biological findings, such as GWAS Catalog (disease association findings), COSMIC (muta-

tions and gene translocation), miRanda (miRNA target genes) and Genomics of Drug Sensitivity in Cancer 
(GDSC, for drug response in cancer). 
  

https://www.ncbi.nlm.nih.gov/gap/
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://dcc.icgc.org/
http://www.roadmapepigenomics.org/
https://www.gtexportal.org/home
https://www.encodeproject.org/
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Table 4. Annotation databases. 

Category Database URL 

Genome browser Ensembl www.ensembl.org/index.html 

UCSC genome browser genome.ucsc.edu 

SNP/indels dbSNP www.ncbi.nlm.nih.gov/SNP 

Gene structure GENCODE www.gencodegenes.org 

Ensembl’s Genebuild www.ensembl.org/index.html 

Functional annotation Pathway Commons www.pathwaycommons.org 

KEGG www.genome.jp/kegg 

Gene Ontology (GO) geneontology.org 

PathBank pathbank.org/ 

Reactome https://reactome.org/ 

WikiPathways www.wikipathways.org 

BioCyc https://biocyc.org/ 

 

3.3.3 Functional and Clinical Interpretation 

When identifying gene mutations, the first step for cancer disease is to catalogue the differences be-
tween the healthy and tumor genomes and for other rare diseases to catalogue all the nucleotide differ-

ences or variations in a patient’s genome compared to a reference genome [45]. The next step is to com-

prehend the clinical significance of the variants, their inheritance patterns, and the strength of their as-
sociation to the disease or phenotype. Understanding the clinical and functional significance of each var-

iant demands complex bioinformatics analysis and the integration of numerous other data types: 

1. Gene structure information data is necessary to identify if the variant lies in the coding or non-
coding region of the genome. 

2. Functional data, and data for coding variant and protein structure are necessary to detect the impact 
of the mutation on protein function. 

3. Transcriptomics and proteomics data are required to identify tissue and cell expression profiles. 

4. Mutation experimental data from human cell or model organisms and disease variation information 

are needed to understand associated phenotypes. 

5. Biological pathway knowledge and protein interaction network are required to learn more about 

the function and interaction with other proteins. 

6. Data from clinical trials and pharmaceutical agents are also important to identify which medicines 
target specific proteins or biological pathways. If it is available, longitudinal phenotypic information at the 

individual and population levels is also needed. 

http://www.ensembl.org/index.html
http://genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/snp/
https://www.gencodegenes.org/
http://www.ensembl.org/index.html
http://www.pathwaycommons.org/
https://www.genome.jp/kegg/
http://geneontology.org/
https://pathbank.org/
https://reactome.org/
http://www.wikipathways.org/
https://biocyc.org/
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3.3.4 Clinical Data Environment 

The incorporation of EHRs (Electronic Health Records) in patient healthcare is very important to relate 
molecular and clinical data. The implementation of EHRs within hospitals has driven to greater standard-

ization and efficiency [46]. A complete overview of EHRs implementation can be found in [47]. However, 

one critical point of data integration in EHRs is the appropriate annotation and mapping of data to curated 
vocabularies or ontologies. For genomic data integration with clinical information, data from primary 
care, hospitals, outcomes, registries, and social care records should be recorded first, by means of con-
trolled clinical terminologies, such as SNOMED Clinical Terms and the Human Phenotype Ontology [48]. 
Ontologies as the above-mentioned are never complete, and users such as clinicians will need to work 

with ontology developers to continuously enhance the precision and accuracy of terminologies. Further-
more, organizations such as CDISC create standards to support the acquisition, sharing, submission and 

archiving of clinical research data. 
Clinical data is usually generated and held across a wide variety of point of care settings such as acute 

hospitals, general practitioners, community hospitals, mental health, and social care. Thus, to minimize 

duplication rates, the integration of health data from different sources should populate a common repos-

itory. 

3.3.5 Data Interoperability 

New models for data interoperability have been created so that experts worldwide can access, use, 
and deposit their data. A pilot project in rare disease, the Deciphering Developmental Disorders (DDD) 

study, aimed to determine the feasibility of translating new high-throughput genomic technologies into 
clinical practice, elucidating the underlying genetic architecture of developmental disorders. This study 

utilized the whole exome sequencing to diagnose 27% of 1,133 previously investigated yet undiagnosed 

children with developmental disorders [49] and established a unique database model in the DECIPHER 

database. 
DECIPHER database, an international community of academic departments of clinical genetics and rare 

disease genomics which now numbers more than 250 centers, has uploaded more than 18,000 cases. 
Each center maintains control of its own patient’s data (which are password protected within the center’s 
own DECIPHER project) until consent is given in order to share the data within specific parties in a collab-

orative group or to allow anonymous genomic and phenotypic data to become freely available within 

genome browsers. Once data are uploaded and shared, consortium members gain access to the patient 

report and contact with other partners to discuss patients of interest. After data analysis, pertinent ge-
nomic variants are returned to individual research participants through their local clinical genetics team. 

Furthermore, the Global Alliance for Global Health (GA4GH) established in 2013, deployed a common 

framework of approaches for adoption, aiming to accelerate progress in human health, drive efficiencies 

and decrease costs. The goal of GA4GH is to create a system of servers, generate standard markup lan-

guages and develop resources and applications like the implementation of the World Wide Web for users 
to access genomics information [50]. GA4GH includes institutions like EMBL-EBI that specialized in data 
management and analysis of big data projects. 

3.3.6 Use of Genomic Data and Electronic Health Records 

Processed data extracted by genome sequencing projects can also be integrated into existing data 
derived from other medical systems in a manner that enables precision medicine. Data that can be inte-
grated include: 



D3.2– State of the art in bioinformatics, imaging informatics, sensor infor-
matics, public health informatics 

Page 57 of 109 

1. Molecular profiles that distinguish differences between diseased and normal states or provide sub-
classification of a disease. 

2. Annotation of variants with clinical importance in different diseases. 

3. Annotation of variants and genes, as well as their interaction with drugs. 

4. Biomarkers used for diagnosis and disease monitoring. 

5. Reference images that can associate molecular data with disease phenotypes. 

6. Human pathogen data and their virulence components. 

The use of the abovementioned data will enable mainly the development of specific target disease 
drugs. One of the major reasons for the high rate of attrition in late-stage clinical trials is the lack of drug 

efficacy. Often the incorrect gene or protein is chosen as the drug target in early drug development stage, 

where the premise is that perturbation of this protein by a compound will significantly change the course 

of disease [51]. Also, in [52] it is shown that genetic data that relate a drug target to a phenotype or 
disease have higher success rates in the clinic. A detailed review on the availability of public data and the 

analytical tools used for various data types for target selection and drug discovery can be found in [53]. 
Reported studies in the literature have successfully stratified patients and detected potential bi-

omarkers of drug response, by utilizing biobanks and integrating different data types. E.g., in a study by 

Folkersen et al. [54] applied in Rheumatoid Arthritis (RA), a biobank was used to test the claim that the 

current state-of-the-art precision medicine will benefit RA patients. In fact, high-throughput RNA se-
quencing, DNA genotyping, extensive proteomics, and flow cytometry measurements, as well as compre-
hensive clinical phenotyping, led to the identification of a small set of biomarkers available in peripheral 

blood that predict clinical response to tumor necrosis factor blockade. In another large cohort study of 
Bagley et al. [55], there was an integration of data derived from electronic medical systems with disease-

associated genetic variants data to study the relationship between disease co-occurrence and commonly 

shared genetic architectures of disease. The study examined 35 disorders, medical records of over 1.2 
million patients, and variants from over 17,000 publications, and determined specific shared genes be-
tween disease classes that were not previously considered to be related, such as autoimmune and neu-

ropsychiatric disorders. Furthermore, public-private initiatives such as Open Targets, a collaboration be-
tween Biogen, the EMBL-European Bioinformatics Institute, GlaxoSmithKline, and the Wellcome Trust 

Sanger Institute, provide comprehensive and updated relevant genetics and high-throughput genomics 
data for drug target selection and validation [56]. Currently, genomic data has also enabled very large-
scale projects, such as the Pan-Cancer Analysis of Whole Genomes (PCAWG) study, which is an interna-

tional collaboration to determine common patterns of mutation in more than 2,600 cancer whole ge-
nomes from the International Cancer Genome Consortium [57]. The major aim of PCAWG is the genera-
tion of genomic, transcriptomic, and epigenomic changes in 50 different tumor types and/or subtypes 

[58]. 

 

3.4 National Genomic Initiatives 

According to a publication [59], released in the American Journal of Human Genetics, members of the 
Global Alliance for Genomics and Health (GA4GH) review the different approaches being taken around 
the world to integrate genomics into healthcare and demonstrate a roadmap for sharing strategies, stand-

ards and data internationally to accelerate implementation. The authors of the study provide a detailed 

overview of the national genomics strategy in the UK, the USA, France, and Australia. In addition, they 
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note that Saudi Arabia, Estonia, Finland, Denmark, Japan, and Qatar are all developing their own national 
strategies, which range from projects that focus on rare disease and cancer—where genomic data will 
have the most immediate impact—to projects that plan to roll out sequencing services across the healthy 
population for research purposes that feed back into healthcare and benefit everyone. The generation of 

genomic data in the healthcare setting will quickly outpace that in research within the next five years, 
with 60 million genomes expected to be sequenced by 2025. By 2030, China hopes to reach its goal of 
adding another 100 million genomes through the Chinese Precision Medicine Initiative. A summary of 
currently active national government-funded genomic medicine initiatives is presented in table 6. 

 

Table 5: Currently active national government-funded genomic medicine initiatives [59]. 

Country 

(Population) 

 

Healthcare system 

Initiatives 

Years active 
[Ref] 

Focus areas Summary 

Australia 
(25,000,000) 
 
Public: mixed state 
and federal 

Australian Genomics 
2014 – 2021 

[66] 

Infrastructure and 
clinical cohorts: rare 
diseases, cancer, in-
fectious diseases. 

A collaborative partnership of over 80 insti-
tutions, with research driven through 4 pro-
grams: National diagnostic and research net-
work; National approach to data federation 
and analysis; Evaluation, policy, ethics; and 
Workforce and education. 

Brazil 

(207,000,000) 
 
Public 

Brazilian Initiative on 
Precision Medicine 

2015-2024 
[67] 

 

Infrastructure, popu-
lation-based cohort, 
rare and common 
disease cohorts. 

Collaboration between five Research Inno-
vation and dissemination centers to develop 
shared genomic databases compliant with 
GA4GH standards. Initial focus creation of 
reference datasets, anticipated to progress 
to clinical cohorts. 

Denmark  
Faroe Islands  

(5,700,000) 

 
Public 

Genome Denmark 
2012- 
[68] 

Infrastructure, popu-
lation-based cohort, 
pathogen project. 

Consortium between four universities, two 
hospitals and two private companies that 
aims to establish a national platform for se-
quencing and bioinformatics. Two demon-
stration projects: Cancer and Pathogens and 
Danish reference genome. 

FarGenProject 
2011-2017 

[69] 

Infrastructure and 
population-based co-
hort. 

Establish Faroese reference genome and bi-
obank through sequencing 1,500 individu-
als; develop local competencies in genome 
sequencing. 

Estonia 

(1,400,000) 

Public 

Eesti biopangas 
Estonian Genome 

Project 
2000-ongoing 

[70] 

Infrastructure and 
population-based co-
hort. 

Genomic data from GWAS, whole genome 
and whole exome sequencing from 52,000 
individuals is linked to information from 
questionnaires, health records and physical 
examination. 

Finland 

(5,490,000) 

 
Public 

Finland Genome 
Strategy 

2015-2020 
[71] 

Infrastructure 

Development of Finnish national reference 
database and IT infrastructure to enable 
data integration between genomic data, 
metadata, and health records. Legal and 
ethics framework, workforce development, 
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clinical decision-support tools, public en-
gagement, and education. 

France 
(67,000,000) 
 
Public 

Plan France 
Médecine 

Génomique 2025 

France Genomic 
Medicine Plan 

2016-2025 
[72] 

Infrastructure and 
clinical cohorts: rare 
diseases, cancer, dia-
betes. 

Initial focus on sequencing patients with 
cancer, diabetes, and rare conditions, with 
the establishment of a hub-and-spoke 
model of 12 sequencing platforms in the 
country, and two national centers for ge-
nomic expertise and analysis. Expected to be 
capable of processing the equivalent of 
235,000 genomes a year by 2020, and it is 
anticipated that the program will be ex-
panded to common conditions 2020 on-
wards. 

Japan 

(123,000,000) 
 
Public 

Japan Genomic 
Medicine Program 

2015- 
[73] 

 

Infrastructure, clini-
cal and population-
based cohorts, drug 
discovery. 

The Japan Genomic Medicine Program is 
one of the strategic priority areas of the Ja-
pan Agency for Medical Research and Devel-
opment (AMED). Five initiatives underpin 
the Genomic Medicine Program: Tailor-
made medical treatment (mapping disease 
susceptibility and pharmacogenomics in a 
cohort of 100,000 patients); Platform for 
promotion of genome medicine (maximizing 
the efficiency of clinical and research infra-
structure, and undertaking a research pro-
gram in ethics, legal and societal implica-
tions); Integrated database of clinical and 
genomic information;  Platform for ge-
nomics-based drug discovery; and the 
Tohoku medical megabank project (develop-
ing a cohort of 150,000 individuals with deep 
phenotyping and genomic analysis). 

Netherlands 

(17,000,000) 
 
Public 

RADICON-NL 
2016-2025 

[74] 
Rare disease 

Trialing new technologies such as rapid 
whole genome sequencing in small cohorts 
to determine utility. 

Health-Research 
Infrastructure 

2015- 
[75] 

Infrastructure 

Establish single interconnected infrastruc-
ture to combine genomic and other health 
data from multiple sources. 

Qatar 

(2,570,000) 
 
Public 

Qatar Genome 
2015- 
[76] 

Infrastructure and 
population-based co-
hort. 

Creation of large data sets of around 6,000 
deeply phenotyped individuals with whole 
genome sequencing data, available to re-
searchers. Workforce development. Devel-
opment of a national policy on genomic re-
search. Clinical genome interpretation re-
porting service to be introduced. 

Saudi Arabia 

(32,280,000) 
 
Public 

Saudi Human 
Genome Program 

2013- 
[77] 

Infrastructure, clini-
cal cohorts (rare and 
common genetic 
conditions) and pop-
ulation-based co-
horts 

Aims to sequence 100,000 individuals and 
create a national network of 7 sequencing 
laboratories, catalogue Saudi-specific muta-
tions in known disease genes, catalogue nor-
mal genetic variation in the Saudi popula-
tion, catalogue mutations for recessive and 
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common genetic disorders of unknown 
cause. 

Switzerland 

(8,000,000) 
 
Public: mixed federal 
and canton 

Swiss Personalized 
Health Network 

2017-2020 
[78] 

Infrastructure. 

Development of a distributed federated net-
work, integrating existing heterogeneous 
systems at partner institutions. Develop-
ment of common data standards and se-
mantics. Implementation of a general con-
sent. Definition of a data sharing policy 
framework. 

Turkey 
(79,000,000) 
 
Public 

Türkiye Genom 
Projesi 

Turkish Genome 
Project 

2017-2023 
[79] 

Infrastructure, clini-
cal cohorts (rare dis-
ease, cancer, neuro-
logical disease) and 
population-based co-
hort. 

Establish Turkish reference genome and 
clinical genomics infrastructure. Plans to se-
quence 100,000 individuals. 

United Kingdom 
(65,640,000) 
 
Public 

Genomics England 
2013-2021 

[80] 

Infrastructure and 
clinical cohorts: rare 
diseases, cancer, in-
fectious diseases. 

100,000 Genomes project is driving the es-
tablishment of the infrastructure required 
for the delivery of diagnostic genomics ser-
vices in England, including a centralized se-
quencing facility, standardized bioinformat-
ics and analysis pipeline, biorepository, and 
data center. 13 NHS Genomic Medicine Cen-
ters recruiting participants and returning re-
sults. Health Education England delivering 
workforce training. 

Scottish Genomes 
Partnership 

2015- 
[81] 

Infrastructure, clini-
cal cohorts (rare dis-
ease and cancer), 
population-based co-
hort. 

Establishment of two sequencing laborato-
ries, and four clinical genomics centers. Re-
cruiting to 100,000 Genomes Project, and 
compiling reference genomic data. 

Welsh 
Genomics for 

Precision Medicine 
Strategy 

2017- 
[82] 

Infrastructure, clini-
cal cohorts (rare dis-
ease and cancer), 
population-based co-
hort. 

Establishment of Genomic Medicine Centre, 
recruiting to 100,000 Genomes project, and 
compiling reference genomic data. 

Northern 
Ireland Genomic 
Medicine Centre 

2017- 
[83] 

Infrastructure, clini-
cal cohorts (rare dis-
ease and cancer), 
population-based co-
hort. 

Establishment of Northern Ireland Genomic 
Medicine Centre, recruiting to the 100,000 
Genomes project, and compiling reference 
genomic data. 

USA 
(321,000,000) 
 
Mixed: private 
insurance and public 

National Human 
Genome Research 
Institute (NHGRI) 

2007- 
[84] 

Infrastructure and 
clinical cohorts. 

Identification of barriers to implementation 
of genomics in clinical care and develop-
ment of solutions and best practices for 
widespread dissemination. Landmark pro-
jects include the Undiagnosed Diseases Net-
work (UDN), Clinical Sequencing Evidence-
Generating Research (CSER) consortium, 
Electronic Medical Records and Genomics 
(eMERGE) Network, Implementing Ge-
nomics in Practice (IGNITE) Network and the 
Newborn Sequencing in Genomic Medicine 
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and Public Health (NSIGHT) program, and 
the Clinical Genomics (ClinGen) Resource. 

Precision Medicine 
Initiative (All of Us) 

2016-2025 
[85] 

Population-based co-
hort. 

Aims to create one of the largest, most di-
verse biomedical datasets through engaging 
1,000,000 volunteers and combining ge-
nomic data with information from electronic 
health records, questionnaires, physical 
evaluations, and biosensors. 

 

3.5 Ongoing Challenges 

3.5.1 Standardization 

Bioinformatics analysis that leads to clinical interpretation is an expensive part of the workflow, as the 

storage and computation costs have not been reduced as quickly as the sequencing costs. Currently, the 
bottlenecks in genomic medicine lie in the data analysis and interpretation end of the pipeline. Interpre-
tation at this case is a crucial step since a patient’s diagnosis status and potential treatment options are 

dependent on interpretation, and not on the raw or processed sequence data [45]. 
Efforts to determine a gold standard methodology and evaluate the performance of data analytical 

methods are currently emerging, including a study by Tokheim and colleagues [60], who compared eight 
different algorithms to identify which gene variants drove cancer driver genes and which were simply 

passenger mutations. Furthermore, in [61], a methodology is introduced to verify systems biology re-

search workflows that are increasingly complex and sophisticated in industrial and academic settings. This 

methodology named ‘Industrial Methodology for Process Verification in Research’, or IMPROVER, is based 
on the evaluation of a research program by dividing a workflow into smaller building blocks that are indi-
vidually verified. The verification of each building block can be implemented internally by members of the 

research program or externally by ‘crowd-sourcing’ to an interested community (www.sbvimprover.com). 

In conjunction with the healthcare system, Electronic Medical Records (EMR) represent an easy source 

of coded medical data, but the lack of standards and the variation among the different systems can 
demonstrate inaccuracies and biases when this data is used for analyses such as calculating disease prev-

alence, incidence, etc. Kevin Wilson et al. [62] review the current methods employed to evaluate diag-
nostic tests. There is also a further need for standardization around clinical data capture and communi-
cation. The challenges lie in being able to gather this information from busy clinicians, and the data also 

needs to be integrated across the various points of patient care. 

Finally, Mark Caulfield, chief scientist at Genomics England pointed that nearly every nation in the 
world has a different way of delivering healthcare, so no one approach will fit all countries. But for ge-

nomic data to fully deliver on its promise, scientists need to share both their expertise and the data to 
enable enhanced patient care. 

 

3.5.2 Data Storage and Sharing 

Currently, a variety of human genomic data generated so far populated the public databases for broad 
research use [45]. Human genomic and phenotypic data from clinical or research studies which would 
require a researcher to have a signed agreement with the originating body are largely stored in controlled-
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access repositories such as the European Genome-Phenome Archive (EGA), the NIH database of Geno-
types and Phenotypes (dbGaP). However, due to the different ethical and legal systems of each country, 
these systems are not scalable nor suitable for the growing volume of genomic data from national health 
studies. 

Managed storage systems following the national legislation and allowing access to data for research 
purposes are crucial. Researcher access to genomic databases is needed to create a research community 
that will be connected and may contribute directly to national health services and patient care systems. 
Analyses that use the variety of data from hundreds of thousands of patients coming from multiple 
healthcare systems will add much more to our knowledge of the genetic basis of disease than multiple 

individual studies using small sample cohorts from individual healthcare systems. 

New data sharing mechanisms are also needed to minimize the movement of large volumes of data. 
Cloud computing frameworks allow remote storage, with analysis scripts uploaded to the cloud and anal-

ysis performed remotely on virtual machines physically located at the remote site “next to” the data. This 
reduces data transfer requirements since only the scripts and analytical results are transferred to and 
from the analysts’ institution or desktop, whereas data populates permanently in the cloud [63]. Initia-

tives such as the European Open Science Cloud will help further the creation of infrastructures to enable 

data sharing and service provision across borders and disciplines. 

With health data from large numbers of people, it will be critical to find ways to protect individuals’ 
privacy and the confidentiality of their health information, while enabling research to take place at the 
same time. Current practices for researcher access to data that include paper-based agreements among 

users, institutions, and data access committees must be replaced by electronic mechanisms, enhancing, 
and strengthening the connection between basic and clinical research. 

3.5.3 Biomedical Informatics Coordination 

The authors in [45] propose the development of a ‘Biomedical Informatics Institute’ to act as a driver 
and coordinating center for health and biomedical informatics research in each country. This center 
should act along with existing medical research and informatics organizations to form an integrated net-

work with hospitals, research organizations, and local and international health initiatives to maximize the 
utility of electronic health data. In bigger nations, this institute would itself likely be a network, but with 

a center of gravity, or hub, at or within one institute. In that respect, local research bioinformatics insti-
tutes will be responsible for handling and providing both public and controlled access data, whereas each 

national biomedical informatics institute will be responsible for data and services that need to stay within 
the national framework. 

Such centers would be the natural partners for research bioinformatics organizations such as EMBL-
EBI or NCBI. In European countries, the development of biomedical informatics institutes or networks 
may be coordinated through an ELIXIR node: ELIXIR is the European life-science infrastructure for biolog-

ical data. 

 

3.6 Future Landscape 

Over the last few decades, open-source data that permits data reuse and data integration has made 
possible great progress in molecular biology. These advances range from recombinant DNA drugs, animal 
cloning and gene therapy. Although genomic data are mainly generated for disease diagnoses, treatment 

and prevention, the availability of these data for use in research can result in a better understanding of 
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disease mechanisms and will lead to improvements in treatment strategies. Moreover, the use of bioin-
formatics in healthcare will further assist to fundamental discoveries related to the big questions of biol-
ogy. 

In order to leverage the growing and already huge amount of data, translational bioinformatics meth-

ods and resources will need to evolve to include algorithms for streaming data capture, real-time data 
aggregation, machine learning, predictive analytics, and visualization solutions to integrate health moni-
toring data with EMRs and genomics data [64]. 

Finally, if genomics medicine approaches become part of routine healthcare, doctors and other 
healthcare providers will require better grounding in molecular genetics and biochemistry. They will need 

to interpret the results of genetic tests, understand how that information is relevant to treatment or 

prevention approaches, and convey this knowledge to patients. In addition, education in the data sciences 
is also very important [65]. Programs to ensure the long-term generation of proficient investigators who 

understand the multi-disciplinary nature of genomics in clinical practice and research, should be estab-
lished and may create a new medical discipline. 
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4. The State of the Art in Sensor Informatics 

Wearable devices enable the continuous monitoring of different physiological parameters offering in-
novative solutions like the prevention of diseases and promoting a healthy lifestyle and wellbeing. By 

ensuring the fidelity of the produced data, wearables can also have an impact on clinical decision-making. 
Furthermore, with the help of wearable sensors doctors and other actors from the healthcare sector can 
monitor the progress of a patient without being in proximity, thus enabling personalized patient care and 
reducing healthcare costs, e.g. shorter rehabilitation periods in hospitals.  

4.1 Data Types and Acquisition Techniques 

Taking measurements of the four primary vital signs (temperature, heart rate, respiration rate, and 

blood pressure) is limited by the number of visits to a healthcare actor, while traditional in-patient devices 
are bulky and not easy portable. Furthermore, the use of secondary data, such as sweat, emotional state 
etc., cannot be measured by conventional healthcare settings and is often omitted in the decision-making 

process. Table 7 gives a brief overview of widely used measurement techniques and sensors that enable 
wearable technology. 

Table 6: An overview of selected measurement techniques and sensor technologies. 

Wearable 
device/sensor or 

 Method  
Measurement Description 

Photoplethysmogra-
phy (PPG) 

Heart rate, blood oxygen 
saturation levels (SpO2) 
[1], vascular resistance [2], 
blood pressure [22]. 

Uses one or two light sources (red or green) and a detector to cap-
ture volumetric changes associated with dilation and contraction of 
vessels in the dermis and hypodermis [3].  
 
Worn on wrist and ear lobe. 

Electrocardiogram 
(ECG) 

Heart rate, heart rate varia-
bility, stroke volume 

It is a voltage-time graph of the heart produced by electrodes which 
detect small changes in current due to systolic and diastolic heart 
function. 
 
Worn as a strap on the chest and limbs [4], as smart clothing [5]. 

Impedance  
Cardiogram (ICG) 

Heart rate, cardiac out-
put, stroke volume, ejec-
tion fraction 

Electrodes placed at the neck and the diaphragm level, detect the 
changes of the thoracic impedance of blood and tissue caused by 
cardiac contraction. Accomplishes reproducible results of 97% [6]. 

Ballistocardiograph 
(BCG) 

Ballistic reactions (e.g., 
forces, acceleration, dis-
placement) 

Measures ballistic reactions like displacement or acceleration re-
sulting from the movement of blood due to expansion and contrac-
tion of the heart. There are different measurement systems with 
different interpretations: Starr BCG, Nickerson BCG, Dock BCG [7]. 
 
Sensors have the form of static charge-sensitive beds [9], piezoelec-
tric films on chairs and beds [10, 11], piezoelectric films worn as 
soles under the feet [12], ear worn accelerometers [13],  wrist worn 
accelerometers and chest seismocardiogram (SCG) [14]. New meth-
ods aim to understand BCG signals by using Computational Fluid Dy-
namics (CFD) and CT images from aortas [8]. 
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Spirometry 
Volume and velocity of air 
in each respiration cycle 

It traditionally consists of an ergospirometer mask, and the use of 
ultrasonic transducers to measure the pressure difference in the 
mask. 
 
Recent efforts try to eliminate the use of a mask, by replacing it with 
miniaturized sensors near the mouth or nose in the form of humid-
ity sensors [15], optical fiber sensors [16], MEMS capacitive pres-
sure sensors [17], and textile sensors [18]. 

Respiratory 
Inductance 

Plethysmography 
(RIP) 

Airway obstruction 

Assesses pulmonary function based on the expansion and contrac-
tion of the chest and abdomen by detecting changes in the magnetic 
field induced by the worn wire loop [4]. 
 
Variations of RIP include elastomeric plethysmography [19] and im-
pedance plethysmography [20]. 

Blood pressure os-
cillometer 

Blood pressure 

It measures pressure fluctuations in the cuff enabled by arterial’s 
elasticity dependency on pressure [21]. 
 
It consists of multiple components: air-bladder cuff, pump, valves, 
pressure sensors, power supply etc. 

Field effect  
transistors  

(FETs) 
Body temperature 

Temperature changes are translated into changes in the flow of cur-
rent.   
 
Different FET sensors: graphene-based sensing elements, metal-
polymer hybrids, and inorganic polymer hybrids [23- 26]. 
 
Attached to clothing, or skin mounted on wrist, ears, fingers etc. 

Resistometry Body Temperature 

It relies on thermal expansion and changes of current flow to detect 
temperature change, by using different metal oxides [27, 28]. 
 
Skin mounted. 

Accelerometer-
based devices 

Acceleration, reaction 
forces 

They use piezoresistive, piezoelectric, or capacitive sensing ele-
ments to convert motion into an electrical signal [29]. 
 
Worn on different body parts or attached on clothing.  
 
There has been no standard way to present accurate physical activ-
ity and energy expenditure from the raw data [30, 31]. 

Enzymatic 
amperometric 

sensors 

Different sweat bi-
omarkers, like electrolytes 
(e.g., sodium and potas-
sium ions) and metabo-
lites (e.g., lactate [32] and 
glucose [33]) 

They use enzyme recognition due the formation of an oxidation-re-
duction reaction between the enzyme and the electrodes [34, 35]. 
 
Skin mounted. 

Ion-selective 
electrode sensors 

(ISEs) 

Different sweat 
biomarkers 

They convert ion concentration to a voltage signal through direct 
potentiometry [35]. 
 
Different systems: solid-state membranes, liquid membranes, 
membranes on electrodes [36]. 
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4.2 Data Mining for Wearable Sensors in Health Monitoring Sys-

tems 

4.2.1 Data Mining Approach 

This section may be reminiscent of some parts of section 2.2 since the data mining process of sensor 
data involves several steps and methods which are like image processing steps and methods. However, 

note that due to the temporal nature of the sensor data and the spatial nature of the image data, there 

are subtle differences between the methods applied. The main steps of any data mining approach involve 
1) preprocessing of the raw data, 2) feature extraction and selection of useful information, and 3) applying 
learning models which get as input these features to perform tasks like anomaly detection, prediction and 

decision making [37], as shown in Fig. 7. The input data may be separated for training and testing the 
applied model before applying it to real world problems. Other parameters such as metadata, expert 
knowledge etc. may also improve the processes of feature extraction and training of the model [38].  

 

 

Figure 7. A generic architecture of the main data mining approach for wearable sensor data [37]. 

 

1. Preprocessing: This stage is necessary to filter out noise, artifacts, and other sensing errors from the 

raw data [39]. Different methods to filter sensor data from artifacts include threshold-based methods 
[40] and statistical tools for the interpolation of the missing data points [41]. To remove noise, methods 

in frequency domain are usually employed such as power spectral density (PSD) [42], fast Fourier trans-

forms (FFT) [43], and low-pass/high-pass filtering tools. Gathering data from multiple sources requires 
also further treatment for issues such as formatting, normalization, and synchronization [39]. 

2. Feature Extraction and Selection: Feature extraction aims at extraction only the part of the input 
data that is useful to us. Signals can be analyzed in the time domain and in the frequency domain. Feature 
extraction in the time domain includes different statistical parameters attributed to the visible character-

istics in data stream such as pick counts, mean, standard deviation etc. [44]. Analysis in the frequency 

domain is applied to extract information about the periodic behavior of time series in the data, and algo-

rithms include power spectral density (PSD) [42], spectral density [45], wavelet coefficients of the signal 
[46], and low-pass/high-pass filters.   

Feature selection aims to select a reduced set (or dimension) of the input data, which is representative 
of the original set. Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independ-
ent Component Analysis (ICA) [47] are widely used methods for data dimension reduction, while other 
commonly used techniques in the literature include analysis of variance (ANOVA) [48],  threshold-based 

rules [41], and Fourier transforms [43]. 
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3. Classification: Input sensor data are classified to a relatively small number of general classes to 
make sense of them. Traditionally, statistical tools (e.g., mean, variance etc.) or statistical functions (e.g., 
risk function [41], factor analysis [49] etc.) are usually applied to simplify the data features and make 
formulations. Logistic regression (LR) [50] and multiple linear regression (MLR) [51] are two common sta-

tistical models. However, the continuous monitoring of sensors produces extremely large datasets that 
cannot be analyzed or interpreted using traditional data processing techniques. Therefore, to counteract 
such problem, machine-learning algorithms have been evolved to classify and interpret the results pre-
senting the current state of the art in sensor informatics. Table 8 summarizes popular classification tech-
niques of streaming sensor data. 

 

Table 7: Selected learning methods for classification. 

Method Description Benefits (ᴏ) / Limitations (•) 

Support 
Vector  

Machines 
(SVM) 

It is a binary classifier which constructs a high dimen-
sional hyper-plane using quadratic programming for the 
separation of data points into two classes [52]. Using a 
kernel function, it can handle high dimensional data 
with a minimal training dataset. It also enables the 
build-in of expert knowledge by manipulating the ker-
nel.  It is commonly used for ECG, HR and SpO2 signals. 

o Suitable for anomaly detection and 
decision-making tasks. 

 It cannot find unexpected information 
from unlabeled data. 

 Not appropriate to integrate 
metadata and other symbolic 
knowledge to enrich the results. 

Decision Trees 
(DT) 

The most robust features of input data are broken 
down into smaller subsets, represented in the form of 
tree nodes. Popular DT algorithms are ID3 [53], C4.5 
[54] and J48 [55]. C4.5 estimates errors in the initial 
nodes and prunes the tree accordingly to make it more 
efficient, while J48 extends ID3’s capabilities, by ac-
counting for missing values, pruning noisy data, and de-
riving rules. 
 

o Simple and easy to implement. 
o They can handle data from multivari-

ate sensors, with short stream of 
data.  

 They cannot find information which is 
hidden from the constructed fea-
tures. 

 Not efficient when the number of in-
put features gets large. 

 Prone to overfitting to the training 
dataset. 

Random 
Forests (RF) 

It consists of many different decisions trees by using 
bagging and feature randomness in a way that they are 
uncorrelated. The overall prediction of the trees is more 
accurate than any individual tree [56]. 

o They outperform decision trees, 
though they show less accuracy than 
gradient boosted trees. 

o In contrast to decision trees, they are 
not prone to overfitting. 

o They do not require normalization. 
o Suitable for large datasets. 

 Overfitting risk. 

 Not appropriate for regression. 

 Biased towards variables with differ-
ent level of attributes. 

Gaussian 
Mixture 
Models 
(GMM) 

They assume that input data is a linear combination of 
Gaussian distributions. After the initialization of some 
parameters, the model is re-estimated based on the in-
put data and then makes statistical inferences about the 
properties of the sub-populations of the overall data 

[57].   

o It can detect unseen information in 
input data. 

o It is the fastest algorithm for learning 
mixture models. 

 Many points per mixture complicate 
the estimation of the covariance ma-
trices, and unless one regularizes the 

https://en.wikipedia.org/wiki/Statistical_inference
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covariances artificially, GMM will di-
verge and find solutions with infinite 
likelihood.  

Hidden 
Markov 
Models 
(HMM) 

Physiological data are modeled as Markov chain to com-
pute the probability of each state’s occurrence by calcu-
lating a histogram of the probabilities of successive 
states [58]. 

o Convenient for modelling sequential 
data and detecting anomalies. 

o Hidden states can be inferred from 
other observations in the stream of 
data [59]. 

 Due to their Markovian nature, they 
do not consider the sequence of 
states leading into any given state. 

 They model the behavior of data us-
ing static distributions; hence they fail 
to model data which vary continu-
ously with time. 

Naive Bayes 

It uses Bayes Theorem from statistics by assuming that 
the input features are conditionally independent [60]. 

o The training time is linear with the 
training dataset. 

o Robust model regarding noise and 
missing values. 

Bayesian 
 Networks 

(BN) 

It is a probabilistic graphical model comprising nodes 
and edges, which captures both conditionally depend-
ent and conditionally independent relationships be-
tween random variables. 
 
  

o Ideal for taking an incident that oc-
curred and predicting the likelihood 
that any of several potential causes 
was the tributary issue. 

 Its simple sophistication neglects data 
independency. 

 Large training datasets will not im-
prove its prediction accuracy. 

 Not suitable for regression. 

k-Nearest  
Neighbor 

(kNN) 

It classifies unknown features based on similarity 
measures, e.g. distance function [61]. 

o It requires no training. 
o Simple and easy to implement for 

multi-class problems. 

 Inefficient for huge datasets. 

 Unable to deal with missing values. 

 Outlier sensitive. 

Neural 
Networks 

(NNs) 

An artificial intelligence approach which mimics biologi-
cal neural networks [62]. It is trained, i.e. it adjusts its 
network weights in each iteration of learning, based on 
the known classification of the training dataset. Com-
mon NNs are the multi-layer perceptron (MLP) [63], the 
deep MLP (DMLP) [64], the replicator neural network 
(RNN) [65], and long short-term memory units (LSTMs) 
[66]. 

o Ideal for modelling non-linear systems 
[67]. 

o It can still improve on large training 
datasets. 

 The training process is time-consum-
ing since NNs need to train on large 
datasets. 

 High computational cost. 

 Prone to overfitting. 

Probabilistic  
Neural 

Networks 
(PNN) 

It is based on Bayes theory and implements a statistical 
algorithm called kernel discriminant analysis.  It differs 
from the back-propagation neural networks in classifica-
tion problems without the need for massive forward 
and backward calculations [68]. 

o Their training process is faster than 
conventional NNs. 

o They show no local minimum issues. 
o They can work with smaller datasets 

for training. 
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 Slow execution of the network, and 
heavy memory requirements as the 
training data get larger. 

Deep Neural  
Networks 

(DNNs) 

It relies on the same theoretical foundations as NNs. 
However, deep learning accounts for the use of many 
hidden neurons and layers. The large number of neu-
rons allows for the extensive coverage of the input data, 
while the layer-by-layer pipeline of non-linear combina-
tion of their outputs generates a lower dimensional pro-
jection of the input space. Convolutional Neural Nets 
(CNNs), Deep Belief Networks (DBNs) and stacked Auto-
encoders functioning as deep Autoencoders are among, 
if not, the most popular DL methods. 

o Features are automatically deduced 
and optimally tuned for desired out-
come.  

o It offers robust results and the highest 
performance among any other 
method when applied to huge da-
tasets. 

 With many layers of neurons, it gets 
so complex that one is unable to com-
prehend the output of the given in-
put.  

 There is no standard theory in select-
ing the appropriate DDN method.  

 

Below table 9 presents selected studies reported in the literature, where the above-mentioned classi-

fications methods have been applied.  
 

Table 8. Applications of modeling methods in monitoring with wearable sensors. 

Year - [REF] 

Author 
Parameters Sensors Methods Description 

2008 - [69]  

Hu et al. 
Heart Rate (HR) ECG SVM 

A binary classifier version of SVM was used 

to categorize ECG signals into normal and 

arrhythmia classes. 

2010 - [70]  

F.T. Sun  

et al. 

Motion, HRV, 

sweat electric 

resistance 

ECG, GCR, 3D 

accelerometers 

Three different 

methods: SVM, 

DT, BN 

A continuous monitoring stress system 

based on physiological signals is presented. 

A comparative study is done for the three 

different classification algorithms. The best 

classification accuracy for 10-fold cross vali-

dation (92.4%) and between-subjects classi-

fication (80.9%) is obtained from using the 

DT and SVM classifier, respectively, with the 

all-feature combination. 

2011 - [71]  

Fotiadis  

et al. 

Mean HR, RR, 

SpO2, Inhala-

tion/Exhalation 

Duration, Body 

Temperature, 

etc. 

- SVM 

In order to detect the patient’s condition 

based on different vital signs, One-Against-

All SVM approach with three different ker-

nels (RBF, polynomial, and sigmoid) is em-

ployed in order to handle multi-label classi-

fication according to four different levels of 

severity. 
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2011 - [72]  

Thakker B., 

Vyas, A.L 

Radial pulses - SVM 

This work could identify gastritis and arthri-

tis in a person using binary classifications of 

normal and abnormal radial pulses of ECG 

with the SVM algorithm. Frequency domain 

features derived from power spectral den-

sity of the pulse signal are ranked to achieve 

dimensionality reduction. Among the differ-

ent kernels employed, the SVM with a linear 

kernel classifies the abnormal pulse signals 

with highest success rate of 9.2%. 

2011 - [73]  

Wang et al. 

HRV, inter-pulse 

interval (IPI) 
ECG GMM 

A GMM method uses IPI signals of ECG to 

make secure the body sensor communica-

tions. The proposed system utilizes ECG sig-

nal behavior (which is unique for each per-

son) as a signature for authenticating other 

knowledge (e.g., medication delivery con-

tent information). 

2011 - [59]  

M. Tomizuka 

J. Bae 

Gait motion - HMM 

HMM was applied to analyze gait phases. 

For the detection of gait phases, the poste-

rior probabilities from the HMM were uti-

lized, and the transition matrix was ana-

lyzed to check the abnormal state transition 

between gait phases. 

2011 - [74]  

Zhu, Ying 
Blood Glucose - HMM 

HMM is used to detect anomalies in blood 

glucose levels being measured. The learning 

of the HMM is done using historic data of 

normal measurements. The simulation re-

sults show that the applied technique is ac-

curate in detecting anomalies in glucose lev-

els and is robust (i.e., no false positives) in 

the presence of reasonable changes in the 

patient’s daily routine. 

2012 - [75]  

K.H. Lee  

et al. 

Heart Rate ECG SVM 

A SVM method was developed for detecting 
the arrhythmia and seizure episodes with 
ECG signals. This research showed that the 
formulation for the kernel function of the 
SVM method with polynomial transfor-
mations reduces substantially the real-time 
computations involved when compared to 
other kernels. 

2012 - [76]  

Clifford, 

Q. Li 

Blood flow 

pulses 
PPG MLP 

An MLP network is applied to combine sev-

eral individual signal quality metrics and 

physiological context and estimate the qual-

ity of the pulses in PPG. After putting sev-

eral individual signal quality metrics as input 

the network optimizes the number of nodes 

(2–20) hidden layer in validation iterations. 
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An accuracy of 97.5% on the training set 

and 95.2% on the test set was found. 

2012 - [77]  

Clifton  

et al. 

RR, HR, BP, 

SpO2 
PPG, ECG GMM 

A patient-personalized system for analysis 

and inference is proposed. This framework 

used Gaussian process to estimate reliably 

the distribution of the values of the physio-

logical data. The method has been devel-

oped to improve removing artifacts and 

missing data from individual subjects. The 

method is demonstrated using a large-scale 

clinical study in which 200 patients have 

been monitored using the proposed system. 

2012 - [78]  

C. Bellos  

et al. 

Motion, SpO2, 

HR, RR, temper-

ature, etc. 

ECG, PPG, respira-

tion bands, 3D ac-

celerometers, hu-

midity and temper-

ature sensors, mi-

crophone with con-

text audio sensor 

RF 

A decision support system is developed to 

classify the severity of health level based on 

a multiple parameter set using RF classifica-

tion as a version of the decision tree. For 

the construction of each tree of the forest, a 

new subset of the features was picked. For 

selecting the best tree, the method used 

threshold-based rules. The accuracy of the 

system has been checked with some prede-

fined targets. 

2013 - [79]  

Chatterjee  

et al. 

Blood Glucose 

(BG) 
- RNN 

In this work, the RNN is designed with 11 in-

put variables, one output node as predicted 

BG level and three hidden layers each with 

8 neurons. This network can predict blood 

glucose levels for the next day from accu-

mulated data with an accuracy of 94%. 

2013 - [47]  

Giri et al. 
Heart Rate ECG 

Four different 

methods: SVM, 

GMM, PNN, 

kNN 

The heart rate signals are decomposed into 

frequency sub-bands with a DWT, and a dif-

ferent algorithm: PCA, LDA or ICA is applied 

on the set of DWT coefficients to reduce the 

data dimension. Then, the selected features 

are fed into a different classification 

method: SVM, GMM, PNN or kNN. The re-

sults show that the ICA coupled with GMM 

classifier combination resulted in highest 

accuracy of 96.8%, sensitivity of 100% and 

specificity of 93.7% compared to other data 

reduction techniques (PCA and LDA) and 

classifiers. 
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2013 - [80]  

E. Gaura  

et al. 

Posture, pulse, 

HR, multi-point 

skin tempera-

tures, core tem-

perature, CO2 

- 

Two different 

methods: BN, 

DT 

This study uses a multiple parameter set to 

predict heat stress. The two algorithms (BN 

and DT) used are trained on empirical data 

and have accuracies of 92.1 ± 2.9 and 94.4 ± 

2.1%, respectively, when tested using leave-

one-subject-out cross-validation. 

2017 - [81]  

H Yin et al. 

HR, BT, SpO2, 

RR, BP, BG etc. 
ECG, GSR, etc. 

BN, NB, kNN, 

J48, SVM, MLP, 

RF, etc. 

A hierarchical health decision support sys-

tem is proposed for disease diagnosis that 

integrates health data from wearable medi-

cal sensors (WMSs) into Computer-based 

clinical decision support systems CDSSs. The 

system offers impressive diagnostic accura-

cies for various diseases: arrhythmia (86 %), 

type-2 diabetes (78%), urinary bladder dis-

order (99%), renal pelvis nephritis (94%), 

and hypothyroid (95%). The authors esti-

mate that the disease diagnosis modules of 

all known 69,000 human diseases would re-

quire just 62 GB of storage space in the 

WMS tier, making it capable for any present 

cloud station. 

2017 - [82]  

Akmandor  

et al. 

RR, BP, pulse 

etc. 

ECG, pulse oxime-

ter, GSR, etc. 
SVM, kNN 

An automatic stress detection and allevia-

tion system, called SoDA, is presented. In 

the stress detection stage, SoDA achieves 

95.8% accuracy with a distinct combination 

of supervised feature selection and unsu-

pervised dimensionality reduction. 

2018 - [83]  

E Katoch 

HR, pulse, body 

temperature, 

motion, etc. 

Accelerometers, 

temperature sen-

sor, optical HR sen-

sor, pulse sensor 

Six different 

methods: SVM, 

BN, kNN, DT, 

LDA, NN 

A method was developed for the automatic 

recognition of sedentary behavior related 

cardiovascular risk. NN topology: one neu-

ron placed on the output layer, 12 neurons 

on the hidden layer and two neurons in the 

input layer. A comparative study using 10-

fold cross-validation between the applied 

classification algorithms showed that SVM, 

NN, BN performed best with an accuracy of 

95.00% ± 2.11%. 

2018 - [84] 

MM Hassan 

et al. 

Motion 
Smartphone inertial 

sensors 

Three different 

methods: SVM, 

DBN, NN 

A robust human activity recognition (e.g., 

standing, walking etc.) system based on the 

smartphone sensors’ data is proposed. DBN 

outperformed the other classification algo-

rithms, achieving a mean recognition rate of 

89.61% and an overall accuracy of 95.85%. 
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2018 - [85]  

F. Miao  

et al. 

21 features 

from PPG and 

ECG signals 

ECG, PPG 

Three different 

methods: MLR, 

DT, NN 

A framework for arterial stiffness monitor-

ing is developed. Experimental results based 

on 501 diverse subjects showed that the 

MLR approach exhibited the best accuracy 

in vascular age estimation, while the pack 

propagation NN was best in cardiovascular 

disease risk estimation. 

2021 - [86]  

ALI F. 

 et al. 

BG, BP, SpO2, 

HR, etc. 
ECG, EEG 

Eight different 

methods: Fuzzy 

classifier, CNN, 

LSTM, LR, kNN, 

SVM, MLP, RF 

A framework is proposed that extracts dif-

ferent data types from multiple sources for 

patients with chronic diseases. A compara-

tive study showed that LSTM achieved the 

highest accuracy among all the applied clas-

sification methods, (75%) for diabetes clas-

sification and (88%) in terms of BP classifica-

tion. 

 

4.2.2 Big Data Repositories, IoT, and Diagnostics 

Towards the integration of data from multiple sensors, IoT technologies will facilitate the efficient ex-
change and gathering of information. According to [87], current IoT technologies include Radio-Frequency 

Identification (RFID) [88] used for device identification and tracking, Cloud Computing [89] for offering 
massive computer resources in terms of data storage and computing power, and nanotechnologies where 

sensors are in the scale of nanometers and their interconnection diminishes the utilization of a frame-

work, called Internet of Nano-Things [90]. Currently, among these technologies, big data repositories may 

be deemed the most important since it allows machine learning algorithms to train with high efficiency 
on large datasets before making inferences for data. The pipeline of remote computing involves detection 

of pathogenic biomarkers in the human body from the biosensors (e.g., hypertension, diabetes etc.), and 
data processing with the help of machine learning in Cloud. Furthermore, developing analytical platforms 

can enable the analysis and linking of diverse datasets. An example is Apache Hadoop [91], which can 
allow for data to be spread across many severs with little reduction in performance. The back end in 
pipeline of remote computing may be a virtual assistant (VA), where human intervention is replaced by 

technology [92]. Sensely [93] is a software as a service-based device being used for regular checkup of 
patients with chronic disorders. It includes biosensors, machine-learning and telemedicine that connects 

the patients automatically to its clinicians upon noticing the threshold symptoms of disorder. The final 
aim of Big Data enterprise is to combine data from multiple sources, e.g. Electronic Health Records, im-

aging phenotypes, genomic data, etc., for predictive analytics and precision health medicine. 
A novel healthcare monitoring framework is proposed in [86], which extracts large amounts of 

healthcare data from multiple sources (smartphones, wearable sensors, medical records, and social net-
works) to monitor efficiently patients with chronic conditions, warn patients before their health risk 

reaches a high level, and support physicians in offering better treatment plans. The framework comprises 
five different layers, namely the data collection layer, the data source layer, the data storage layer, the 
analytics engine layer, and the data representation layer. The data collection layer gathers data from var-
ious domains like wearable devices, doctor to patient discussions on social networks etc., while the source 
layer deals with data heterogeneity.  The data storage layer is responsible for offloading to the Cloud 
server all the collected data through a wireless communications network. The analytics engine layer is 
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divided into two sub-layers: the data computation layer and the data classification layer. The data com-
putation layer has different sub-models for tasks like data preprocessing, data dimensionality reduction 
and feature extraction, and word embedding. Note that ontology-based semantic knowledge, along with 
soft computing approaches, are employed to process and analyze the data for the extraction of required 

information. The classification layer uses Bi-LSTM, a machine learning approach, and utilizes ontologies 
for the classification of diabetes, BP, mental health, and drug side effects. By analyzing the multidimen-
sional data about patients, this layer gets insights for the decision-making process.  The proposed system 
uses Hadoop MapReduce with Machine Learning to reduce large-sized data about patient treatments. 
The representation layer, which is the last layer, presents the analysis results to physician who in turn 

suggests the appropriate treatment plan.  

 
 

4.3 Applications of Wearable Sensor Technology in Healthcare 

Wearable sensors enable the continuous monitoring of vital signs (e.g., temperature, heart rate etc.) 
and other secondary data such as motion, emotional state etc., promoting individuals to maintain a good 

state of health. Furthermore, by remote monitoring wearable sensors facilitate independent living in 
home environments or hospitals for patient management, and through anomaly detection and raising 
alarms they additionally ease managing a disease [94]. 

4.3.1 Maintenance of Health 

4.3.1.1 Fall Identification and Prevention 

Wearable sensors can serve the ever-growing elder population for the early detection and prevention 

of falls. Studies presenting wearable sensors for the early detection of falls have shown satisfactory results 

in laboratory settings, although their applicability may be limited in real-world situations [95]. E.g. in [96], 
a method detecting a fall at different phases with the help of tri-axial accelerometers, achieved 86.5%, 

87.3% and 91.2% accuracy for fall detection at pre-impacts, impacts, and post-impacts, respectively. In 
[97], a novel hierarchical fall detection system using accelerometer sensors on the waist reported an ac-
curacy of 99% in identifying falls. Lastly in [98], compressive sensing techniques were used to detect sig-
nals and binary tree classifies for evaluation, achieving 99% precision in identifying falls. 

4.3.1.2  Physical Activity 

Modern wearables can assist with behavior change interventions aiming to encourage individual phys-

ical activity, and thus having high impact on the society. For instance, by decreasing physical inactivity by 
10%, more than 533,000 deaths could be averted every year [99]. A further study reported, reported a 

positive impact of wearable device-based system along with vibration reminders at 20-minute intervals 
that could change student posture during prolonged sedentary behavior [100]. However, when tracking 
exercise intensity wearable devices and algorithms are currently unable to track calory consumption, as 

demonstrated by Dooley et al. [101].  Lastly, it is common practice nowadays to assess a person’s daily 
physical activity with wearable sensors and link it to their disease profile, e.g. in chronic kidney [102] and 
cardiovascular disease [103].  
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4.3.1.3 Early-Stage Cancer Identification 

Recently, a European Consortium developed a novel miniaturized, portable device called SNIFFPHONE 

[104], named after the name of the consortium. This device enables the diagnosis of gastric cancer from 
exhaled breath, catching the disease at the very early stages where the survival rate is very high. The 
SNIFFPHONE device operates in two steps; first the ambient air is measured for reference and then the 
user exhales at a short distance from the inlet of the device. When the user exhales, the beginning and 
end of his/her breath is detected by a breath detector sensor. Then, the microfluidic system directs the 

breath sample to the sensors chamber, where the gas sensor array is located. The sensor array contains 
a chip with eight Gold Nanoparticles (GNP) gas sensors for the detection of volatile organic compound 

(VOC) biomarkers of gastrointestinal diseases with risk of developing cancer. The SNIFFPHONE sensors 
response resulting from the breath measurements along with other relevant user information is trans-

ferred wirelessly via the phone’s internet to the cloud server for a remote analysis of the collected signals. 
Machine learning methods are then applied on the received data, while considering other clinical infor-
mation of the same patient. Upon completion of the analysis, a clinical report including the diagnosis 

results is sent back to clinical doctor for diagnosis and tracking along with a brief feedback to the user. 

SNIFFPHONE analysis perform with an 93.4% accuracy. 

4.3.2 Patient Management 

4.3.2.1 Patients with Cancer  

Advances in cancer therapeutics have improved the survival rate and quality of life in patients affected 
by various cancers, but have been accompanied by treatment related cardiotoxicity, e.g. left ventricular 
(LV) dysfunction and/or overt heart failure (HF). In their work [105], the authors have demonstrated the 

potential of using wearable seismocardiography (SCG) to assess the clinical status of patients with LV 

relaxation dysfunction, when monitoring cancer treatment-related cardiovascular toxicity in patients un-
dergoing cancer treatment. In another study [106], thirty-seven patients were evaluated (54% male, me-

dian 62 years) to ascertain associations between wearable activity monitor metrics (steps, distance, stairs) 
and performance status, clinical outcomes (adverse events, hospitalization times, survival rates), and pa-
tient-reported outcomes (PROs) using correlation statistics and multivariable logistic regression models. 

Patients averaged 3700 steps, 1.7 miles, and 3 flights of stairs per day. Each 1000 steps/day increase was 
associated with reduced odds for adverse events, hospitalizations, and hazard for death. Significant cor-

relations were also observed between activity metrics and PROs. 

4.3.2.2 Patients with Stroke 

Stroke is a major cause of acquired disability in the global population. In stroke rehabilitation, digital 

biomarkers (e.g. activity levels or postures) could provide clinicians and patients interpretable feedback 

besides estimated clinical assessment scores and help devising personalized therapy recommendations 

based on continuous measurement. In their work [107], Adrian Derungs et al. show that wearable sensors 
and digital biomarkers offer opportunities to investigate changes during the recovery process in patients 
after stroke and they propose three novel digital biomarkers for longitudinal, bilateral movement evalu-
ation, which are viable for therapy and free-living. In another study by Burridge et al. [108], the research-

ers developed a wearable device with embedded inertial and mechanomyography sensors, algorithms to 
classify functional movement, and a graphical user interface to present meaningful data to patients to 

support a home exercise program. 
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4.3.2.3 Chronic Pulmonary Patients 

Chronic obstructive pulmonary disease is a type of lung disease caused by poor airflow that makes 

breathing difficult. As a chronic malady, it typically worsens over time, so extensive, long-term pulmonary 
rehabilitation exercises and patient management are required. A team of researchers designed a system 
which provides a comfortable and cost-effective option for the remote rehabilitation of patients with 
chronic breathing difficulties [109]. In this system, data regarding motion captured by a stereo-camera 
are fused with the signals from a PPG sensor and they are fed as input variables to an evaluation frame-

work. In addition, the system included a set of rehabilitation exercises specific for pulmonary patients, 
and provided exercise tracking progress, patient performance, exercise assignments, and exercise guid-

ance.  

4.3.3 Disease Management 

4.3.3.1 Heart Disorders 

Implantable Cardioverter Defibrillator (ICD) is a battery-powered device that keeps track of the heart 
rate for people with heart disorders. In addition, if an abnormal heart rhythm (e.g. arrhythmia) is detected 

the device will deliver an electric shock to restore a normal heartbeat with the help of wires connecting 

the ICD to the heart. ICD can reduce sudden arrhythmic death in patients who are at high risk [110]. An 

alternate option in case of temporary inability to implant an ICD, and lastly refusal of an indicated ICD by 
the patient, is the wearable cardioverter defibrillator (WCD) indicated to prevent sudden arrhythmic 

death. Primarily, the WCD is designed to detect and treat automatically ventricular tachyarrhythmias. An 
WCD consists of tantalum oxide electrodes for long-term electrocardiogram (ECG) monitoring and has 
the characteristics of an ICD, but does not need to be implanted, and it has similarities with an external 

defibrillator, but does not require a bystander to apply lifesaving shocks when necessary [111].  

Further studies, see e.g. [112], investigated the efficacy of a wireless digital watch for remote moni-
toring for the vital signs of patients, compared to traditional clinical monitors. The overall agreement 

between the watch and clinical monitors was statistically significant, and the wearable device provided 
reliable heart rate data for about 80% of the patients. In a similar study [113], the researchers showed 
that a wrist-worn personal fitness tracker device could be used to monitor the heart rate of patients, 

although with a systematic error, that being, the heart rate was slightly lower than the conventional 
method of continuous electrocardiographic (cECG) monitoring. 

4.3.3.2 Blood Disorders 

Wearable devices can improve hypertension control and medication adherence through easier logging 

of repeated blood pressure measurements, better connectivity with healthcare provides, and medication 

reminder alerts [114]. Current tools for the out-the-office measurements include wireless upper arm 

blood pressure cuffs and cuffless devices. Wireless upper arm cuffs are automated oscillometric devices 

that synchronize via bluetooth technology to a computer or smartphone. These work the same way as 
conventional clinical devices by recording vibrations in the arterial wall to establish systolic and diastolic 
pressure. Blood pressures are automatically logged and saved. The cuffless devices are applied to the 
wrist or finger, measuring via optical sensors beat-to-beat variability, and via mathematic formulations 

they can compute systolic and diastolic readings. For instance, one such device, Somnotouch-NIBP, uses 
finger PPG and three ECG leads connected to a watch-like control unit to obtain systolic and diastolic 

blood pressure via pulse wave velocity measurements [115]. The benefits of these blood pressure sensors 
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include the ability to monitor continuously and avoid sleep-disrupting cuff inflations when measurements 
are required at night. However, the tradeoff for this convenience lies in the accuracy of the devices. Alt-
hough many wireless sensors have been validated and FDA approved for clinical use, measurements can 
vary as much as 20 mmHg from blood pressures derived using brachial cuff [116]. While there is inade-

quate evidence to recommend cuffless devices to patients at present, there are over 1000 clinical trials 
currently registered with www.clinicaltrials.gov to evaluate the feasibility, accuracy, and safety of various 
sensor technologies. Other devices for pressure blood measurements have been tried on patients with 
orthostatic hypotension, who have pathologic hemodynamics related to changes in body posture. Re-
searchers designed a new cephalic laser blood flowmeter that can be worn on the tragus to investigate 

hemodynamics upon rising from a sitting or squatting posture. This new wearable cerebral blood flow 

(CBF) meter is potentially useful for estimating cephalic hemodynamics and objectively diagnosing cere-
bral ischemic symptoms of patients in a standing posture [117]. 

4.3.3.3 Diabetes  

People with diabetes have a deficiency of the insulin production by the pancreas, which prevents a 

correct metabolism of glucose. Current methods of managing diabetes include insulin injections by some 
external device. Cutting the supply or incorrect doses of insulin, may initiate a chain of subsequent reac-

tions, possibly even leading to life-threatening health conditions. The amount of insulin needed varies, 

depending mostly on the nutrition and activity of the patient. People with diabetes must therefore con-

tinuously measure their glycemia and perform several subcutaneous injections of insulin per day. Through 
subcutaneous insulin infusion, mathematical models and computer simulation of the human metabolic 
system, real-time continuous glucose monitoring (CGM), and control algorithms driving closed-loop con-

trol systems known as the “artificial pancreas” [118], the quality of life of many people suffering from 
diabetes type I can be significantly enhanced. A common technique utilized by most of the commercial-

ized CGM systems is the glucose-oxidase electrochemical principle [119], which makes use of a minimally 
invasive needle sensor, usually inserted in the subcutaneous tissue, in the abdomen or on the arm, to 

measure an electrical current signal generated by the glucose-oxidase reaction. 
 However, in recent years, new commercialized state-of-the-art sensors start to emerge and alter the 

scope of glucose measuring invasive techniques. Two current consumer technologies include: Glutrac and 
AerBetic. Glutrac [120] is a smartwatch that claims to provide non-invasive continuous glucose monitoring 

with the use of optical sensors, while still achieving a high level of accuracy. This smartwatch records 
health data every 15 minutes. Then it analyzes this data in the cloud and with the help of AI algorithms it 
provides the precise blood glucose prediction of the current measurement [121]. AerBetic [122] is also a 
smartwatch, designed based on the idea that dogs can smell a person’s blood sugar fluctuations. To mon-

itor the changes in blood sugar levels, AerBetic uses a nano-sensor that detects gases humans emit. This 
sensor is sensitive enough that it detects gases at parts per billion level, so the individual doesn’t have to 

directly breath to the watch.  
Other novel technologies involve glucose measurements via sweat. In a reported study [123], re-

searchers explore how skin patches can use the glucose levels in sweat as an indicator of overall blood 
glucose concentration and deliver insulin in a non-invasive manner. Their device captures sweat from the 
person’s skin, and sensors within the patch measure sweat’s pH level and temperature changes. Once 

high sugar levels are recognized, built-in heaters in the patch dissolve a layer of coating, exposing mi-
croneedles that release a drug (metformin) that can regulate and reduce high blood sugar levels. Blood 

sugar readings are also wirelessly transmitted to a mobile device so that long term trends are simple to 
read and monitor. 
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4.3.3.4 Parkinson’s Disease 

Parkinson’s disease (PD) is the second-most common neurodegenerative disease and a major cause of 

disability worldwide [124]. Currently, treatment is based on subjective questionnaires and rare patient 
doctor interactions. Wearable devices are competent to collect useful data that offer insights into the 
diagnosis and the effects of treatment interventions to manage Parkinson’s disease. E.g., bradykinesia is 
a primary symptom of PD. In a study [125], researchers developed a wearable device to assess the severity 
of the Parkinsonian bradykinesia based on the ten-second whole-hand-grasp action, and a regression 

model to fit the parameters under consideration. In their work the authors claim that the proposed quan-
tification model demonstrated greater goodness-of-fit when compared with related works. With dyski-

nesia being another characteristic symptom of PD, researchers developed an objective dyskinesia score 
by using a motion capture system to collect patient kinematic data [126]. Furthermore, Freezing of Gait 

(FoG) is a common symptom in PD occurring with significant variability, and severity and is associated 
with increased risk of falls. Recently, Fotiadis et al. [127] validated a novel system based on a pair of 
pressure insoles equipped with a 3D accelerometer to detect FoG episodes. In their study, twenty PD 

patients attended a motor assessment protocol organized into eight multiple videos recorded sessions, 

both in clinical and ecological settings and both in the ON and OFF state. Then the researchers compared 
the FoG episodes detected using the processed data gathered from the insoles with those tagged by a 
clinician on video recordings. Their algorithm correctly detected 90% of the episodes. 

Finally, a fully integrated commercialized technology for PD monitoring is the PDMonitor®.  PD Moni-
tor consists of: 1) five monitoring devices worn by the patient on different body parts, where each device 

collects 3D kinematic data, 2) a docking station (SmartBox) for charging of monitoring devices and up-

loading patient information to the cloud, 3) a mobile app for patients or caregivers to interact with the 

device and provide important diary information, 4) the Cloud, where patient data is securely stored and 
5) the Physician Tool, a web-based application to view and download patient reports with a comprehen-

sive and objective assessment of the PD symptoms. PDMonitor can monitor bradykinesia, dyskinesia, 
tremor, FoG, gait disturbances and postural instability, to name a few. 

4.3.3.5 Emotional Health State 

It is well recognized that emotions impact the overall health state of an individual. Emotions are neural 

responses to internal and/or external events that may manifest negatively as depression, anxiety, stress, 
fatigue, sleepiness, sleep disorders etc. Different chemical biomarkers indicate the emotional state of a 
person, and thus wearable devices have been proposed, which through chemical analysis (e.g., cortisol, 

prolactin, hGH, ACTH, and lactate) of saliva and blood can measure, e.g. stress state [128, 129]. Emotional 
state can also be inferred from measurement of various physiological parameters including heart rate 
[130], heart rate variability [131], respiration rate [132], blood pressure [133], electroencephalogram 

(EEG) [134], electromyogram (EMG) and electro-oculogram (EOG) [135], plethysmograph (PPG) [136], 
galvanic skin response (GSR) [137], and skin temperature [130]. In addition, night sleep patterns can be a 
prominent indicator of stress. In a study [138], the results showed that stress disrupts night sleep, and 
thus causing sympathetic predominance which then can be used to quantify stress levels.  Finally, the 

advent of smartphones offers a range of emotion detection capabilities, since they can utilize an ever-
increasing number of apps that detect and respond to end user emotional states [139, 140]. 
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4.4 Future Landscape 

4.4.1 Selective Fusion of Multiple Signals 

Effective approaches are needed for the integration of different physiological signals from multiple 
sources [141]. E.g., in heartbeat monitoring the use of different physiological signals can improve robust-

ness and accuracy of detection.  In [142], the authors propose an approach based on CNNs to fuse various 
physiological signals and enhance heartbeat detection. In another study [143], a deep fusional attention 
neural network, named FusionAtt, could learn channel-aware representations of multi-channel biosig-
nals. This system outperformed current state-of-the-art approaches in two clinical tasks: seizure detection 

using data from 23-channel electroencephalogram signals and sleep stage classification using data from 

14-channel polysomnography. 

4.4.2 Improvements in Model Training 

Currently, several efforts are focused on the challenge of getting massive quantities of reliable and 

consistent labels that can be used to train machine learning algorithms [141]. In their study [144], re-
searchers provide a systematic approach employing Bayesian methods for the automated labeling, and 
fusion of different physiological signals to support decision-making in personalized care. A study address-

ing the problem manual annotations in digital pathology [145], presented a multiple instance learning-

based approach to train deep neural networks that generate semantically rich tile-level features. These 

features are then used as input into an RNN to integrate the information across the whole slide and report 
the final classification result.  With the proposed system, pathologists could exclude 65–75% of slides 

while retaining 100% sensitivity. 

4.4.3 Novel Approaches to Handle Longitudinal Data 

Yildirim et al., [146] describe a way to compress signals from Holter monitor devices using a deep 
convolutional auto-encoder. The compressed electrocardiogram signals are then fed into LSTM classifiers 

to detect arrhythmia. Based on the compressed signals, storage requirement and classification time were 
reduced, while studies conducted with MIT-BIH arrhythmia database, reported classification accuracy of 

over 99%. In medical image analysis, image registration is a frequent task in medical imaging and com-
puter-aided diagnosis.  

4.4.4 Self-powered and battery-free wearable systems 

Long-term stability in energy requirements will play a major role in wearable devices. Traditional bat-

teries fail to meet the energy requirements of storage units in wearable devices; hence several energy 

harvesting solutions have been proposed to address the limitations of the bulky batteries. Among the 

proposed solutions, there have been systems that exploit solar energy, mechanical and thermal energy 
(produced by the subject). Regarding solar energy, a solar cell is developed on a plastic substrate to con-
vert the incoming light into electricity, and supply power to the whole sensing system, Fig. 8a. Regarding 
mechanical energy, a magneto-mechanotriboelectric nanogenerator which generates electricity from the 
alternating magnetic field has been reported recently, successfully powering up an indoor wireless posi-

tioning system Fig. 8b. Regarding thermal energy, a flexible thermoelectric generator (TEG) is developed 
with a polymer-based heat sink assembled on the top surface to further increase the output power den-

sity from 8 to 38 µW 𝑐𝑚−2. An electrocardiography (ECG) sensing circuit is also fabricated on a flexible 
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PCB substrate and powered by the wearable TEG using body heat as the power source Fig. 8c. A system-
atic review of the aforementioned propositions, and other that relate to implanted devices can be found 
in [147]. 

 

 

 

Figure 8: A. Self-powered gas monitoring system with embedded solar cells as the energy source; B. Self-powered 
indoor IoT positioning system integrated with energy harvesting and storage units; C. Self-powered wearable elec-
trocardiography system powered  by a wearable thermoelectric generator [147]. 
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5. The State of the Art in Public Health Informatics 

Public health informatics is defined as the systematic application of information, computer science, and 

technology to public health practice, research, and learning. Health informatics brings state-of-the-art 

technology in the healthcare sector and specifically the idea of a “smart care plan”, which is an important 

factor for paving the way toward Predictive, Preventive, Personalized and Participatory Medicine (P4-

medicine). Moreover, the HL7 FHIR standard and blockchain ledger technologies are two very promising 

areas of research and development for health information management. An appropriate interaction 

among their approaches, concepts and tools could give rise to the hub of the IT infrastructure for P4-

medicine. This overview presents current issues and proposed solutions in health domain, in the form of 

tools and software applications to support data collection, analysis and recording, advanced IT systems 

such as blockchain to manage the different phases of health processes, standards to enable fast 

healthcare interoperability, and the adoption of electronic health records and clinical pathways to foster 

P4-medicine. Finally, topics of privacy issues and other challenges, as well as opportunities of applying 

health informatics are discussed. 

 

5.1 Needs and Tools for the Health Domain 

The total amount of health expenses represents the amount spent on health care and related activities 

such as administration of insurance, health research, and public health, including expenses from both 

public and private funds. By 2000, health spending reached about $1.4 trillion in the USA, and in 2019 the 
amount spent was doubled to $3.8 trillion [1]. This emerging trend reflects a gap in the healthcare sector 
where the “value-based” policies of commercial and government insurance companies try to fill by shift-

ing the attention of clinical organizations from individual patient visits to managing larger populations 

and improving their overall health while being cost effective. A number of health information technology 

(IT) solutions, such as health information exchanges (HIEs), have urged the collaboration of health systems 
and public health departments to better manage their overlapping “community” denominators to inte-

grate across many different digital silos [2]. 
The major innovations that must be provided to the health system should be able to provide [3]: 

 A universal model for health focused on the individual person (each time, and not only for a 
specific clinical event) 

 A proactive approach to the health sector, using novel tools aiming at including the patient in 

the care processes. 

 An integrated process management, by generating cooperative care models through the digi-
tal connection among all the actors included in the prevention, treatment, and follow-up pro-
cesses. 

 A certification of the health protocols along with the clinical data produced, aiming to encour-
age a native use of knowledge technologies that allow to offer intelligent services capable of 
integrating and configuring themselves with a view to socio-health care comprehension as a 

complex adaptive system. 
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To achieve the above tasks, the health domain needs innovative IT platforms and services that comply 
with the most health informatics standards, capable of supporting stakeholders in the development of 
innovative, certified, and interoperable eHealth applications. Table 10 outlines current specific issues in 
healthcare and proposed solutions offered by IT platforms and services. 

 

Table 9. Possible solutions for the main health issues [3]. 

Issue Solution 

 
Secure sharing of health data 

Consolidated interoperability models and secure protocols must be adopted for 
exchanging heterogeneous information coming from different sources (like hos-
pitals, first aids, laboratories, etc.), assuring privacy maintenance. 

 
Personalized health care 

Specific IT systems should be designed to gather, process, and store patient 
health information in a certified manner directly in the patient’s home. 

Health processes 
Advanced models and tools for the optimization, certification, and handling of 
the health processes are necessary support for the decision-making phase. 

 
Evidence-based medicine 

An information model should be used to integrate and analyze large amounts of 
socio-health data, based on the adoption of the Big Data Analytics paradigm. 

 
Internet of Things 

Practical tools should be developed to effectively integrate the data produced 
by the numerous existing biomedical sensors and wearable devices with other 
patient-related data. 

 

5.1.1 Widely used tools and applications 

In the following, table 11 presents different tools for supporting survey and data collection, table 12 

presents tools for analysis, visualization and reporting (AVR) of the generated data, and table 13 presents 

current systems that have been employed, which make use of social media information in order to sup-

port public health informatics (e.g., for active case finding, contact identification and prevention messag-
ing in case of an infection outbreak). 

 

Table 10: Support of Survey and Questionnaire Data Collection [4]. 

Application Comments 

Outbreak management components 
of reportable disease surveillance 
systems. 

 Available as an integrated management component through the public 
health agency’s reportable disease surveillance system [5]. 

 Availably commercial off-the-shelf products (e.g., Maven [The Apache Soft-
ware Foundation, Wakefield, MA; https://maven.apache.org/ external icon]) 

or health department– designed and developed (e.g., Florida Department of 

Health’s Merlin system). 

Epi Info (CDC, Atlanta, GA) 

 Free public-domain suite of software tools designed and maintained by CDC 
for public health practitioners and researchers. 

 Easy to set up; can be utilized to support mobile data collection. 

 Contains customizable data entry forms and database construction. 

 Enables data analyses with epidemiologic statistics, maps, and graphs for 
public health professionals who lack an IT background. 

file:///C:/Users/Mairi/Documents/Medlab/SGABU/State%20of%20the%20Art/Public_Health_Informatics.docx%23_bookmark6
https://maven.apache.org/
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 Used in outbreak investigations and for developing small-to-mid sized dis-
ease surveillance systems. 

 Useful for public health field investigators to know and use because of its ca-
pabilities. 

 Available for free download at http://www.cdc.gov/epiinfo 

 
REDCap (Vanderbilt University, Nash-

ville, TN) 

 Secure Internet application for building and managing online surveys and 
databases. 

 Used to collect virtually any type of data, including in environments compli-
ant with electronic records legislation (21 Code of Federal Regulations Part 
11),  the Federal  Information Security Management Act   of 2002 (44 U.S. 
Code §3541), and the Health Insurance Portability and Accountability Act of 

1996 (Public Law 104– 191, 110 Stat 1936). 

 Specifically designed to support online or offline data capture for research 
studies and operations. 

 Accessible through computers, tablets, and smartphones. 

 Available at no charge to not-for-profit institutions that join the REDCap 
Consortium at http://www.project-redcap.org 

 

Table 11:Applications for Analysis, Visualization, and Reporting (AVR) [4]. 

Application Comments 

SAS (Statistical Analysis System; SAS Insti-
tute, Inc., Cary, NC) 

 Statistical analysis software suite for advanced analytics, multivariate 
analyses, business intelligence, data management, and predictive ana-
lytics. 

 Highly powerful software application. 

 Additional information available at https://www.sas.com 

SPSS (IBM Corporation, Armonk, NY) 

 Analytic software widely used in social science studies. 

 In addition to statistical analysis, features data management (e.g., select-
ing cases, reshaping files, or creating derived data) and data documentation. 

 Additional information available at http://www.ibm.com 

ArcGIS (Esri, Redlands, CA) 
 Designed to store, manipulate, analyze, manage spatial or geographic 
data. 

 Additional information is available at http://www.esri.com 

R (R Foundation, Vienna, Austria) 

 Free, open-source statistical analysis software. 

 Contains graphics capability and run programs stored in script files. 

 Associated with RStudio, an integrated development environment for R. 

 Additional information is available at http://www.rstudio.com 

ESSENCE (Electronic Surveillance System 
for the Early Notification of Community-
based Epidemics) 

 Syndromic surveillance system operational in many jurisdictions and na-
tionally as part of CDC’s National Syndromic Surveillance Program. 

 Jurisdictional versions have different features or data sets. 

 Developed by the Johns Hopkins University Applied Physics Laboratory. 

 Enhancements developed through a collaboration among CDC, state 
and local health departments, and the Applied Physics Laboratory. 

 Additional information about the National Syndromic Surveillance Pro-
gram and ESSENCE available at https://www.cdc.gov/nssp 

SaTScan (Harvard Medical School and Har-
vard Pilgrim Health Care Institute, Boston, 
MA) 

 Analyzes spatial, temporal, and space-time data by using scan statistics. 

 Available for free download at https://www.satscan.org/ 

BioMosaic (CDC, Atlanta, GA) 
 Analytic tool that integrates demography, migration, and health data. 

 Available to designated CDC staff only. 

http://www.cdc.gov/epiinfo
http://www.project-redcap.org/
https://www.sas.com/en_us/software/stat.html
https://www.ibm.com/analytics/spss-statistics-software
http://www.esri.com/
http://www.rstudio.com/
https://www.cdc.gov/nssp/news.html#ISDS
https://www.satscan.org/
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 Combines information about travel, disease patterns, and location of 
U.S. settlement of persons from other countries. 

 Combines complex data from multiple sources into a visual format, in-
cluding maps and other types of graphics. 

 Developed through a collaboration in 2011 among CDC’s Division of 
Global Migration and Quarantine, Harvard University, and the University 
of Toronto. 

HealthMap (Boston Children’s Hospital, 
Boston, MA) 

 Free mapping utility. 

 Uses informal Internet sources (e.g., online news aggregators, expert-
curated discussions, and validated official reports) for disease outbreak 
monitoring and real-time surveillance of emerging public health threats 
to achieve a unified and comprehensive view of the current global state 
of infectious diseases. 

 Available for use at http://www.healthmap.org 

 

Table 12. Emerging crowdsourcing tools and applications [1]. 

Application Comments 

Mobile devices and APPs 
 Mobile devices and multiple application tools can assist field investigators 

with public health surveillance 

Single-use online forms  SurveyMonkey (San Mateo, CA) 

EpiCollect (Imperial College London, 
UK) 

 Internet and mobile app for generating forms (e.g., questionnaires) and 
freely hosted project online sites for data collection 

 Data collected, including global positioning systems and media, by using 
multiple telephones 

 All data centrally viewable by using Google Maps, tables, or charts 

 Available for free download at http://www.epicollect.net/ 

Social media 
 Yelp (Yelp, Inc., San Francisco, CA), Twitter (Twitter, Inc., San Francisco, CA), 

and Facebook (Facebook, Inc., Menlo Park, CA) 

5.1.2 Blockchain 

The blockchain technology designed in 2008 as the core data and programming structure of the Bitcoin 
cryptocurrency, has widely spread and evolved in the last two decades. In a blockchain network, any 
transaction task concerns endpoints that are authenticated through public keys of a given digital signature 

scheme, and the blockchain ledger consists of a continuously growing list of transaction records that are 
grouped in blocks, where each block contains a cryptographic hash of the previous block. Considering that 
a given block cannot be changed, all the previous blocks in the chain— with high probability—cannot be 
changed as well, due to the properties of the hash function. More particularly, if the last block in the chain 

is supposed to be uniquely generated, then these properties are inherited with high probability by all the 
other blocks, and the overall blockchain satisfies both the consistency and integrity properties. Current 

state-of-the-art blockchain technologies mainly recognize two different types: permission less and per-

missioned [6], and operate on different protocols, such as byzantine fault tolerant (BFT) [7], proof of work 
(PoW) [8], proof of stake (PoS) [9], proof of activity (PoA) [10], proof of elapsed time (PoET) [11], etc. 

Blockchain technology allows to implement innovative platforms in the health sector, facilitating the 
management of the different phases of the health processes, detecting, and certifying activities and pro-
cedures to be followed. This will facilitate the resources to be used, to monitor and optimize overall effi-
ciency and effectiveness. Moreover, they will simplify the activities of medical and health personnel, of-

fering to patients a better and faster treatment service. The certification of clinical data produced and 

http://www.healthmap.org/
http://www.epicollect.net/
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health processes performed will permit to provide “controlled” intelligent services to doctors in both: (i) 
the management of decision-making processes carried out in diagnostic, therapeutic and rehabilitation 
practice, and (ii) the assessment of the interventions to be carried out to provide patient health care. 
Indeed, this would allow training artificial intelligence-based systems on correct, verified information and 

improve the overall quality of services, reducing the health risk and ensuring alignment with clinical guide-
lines. 

5.1.3 Electronic and Personal Health Records 

Electronic health records (EHRs) are real-time records that make information available securely to au-
thorized users. While an EHR contains the medical and treatment histories of patients, an EHR system is 
built to go beyond standard clinical data collected in a provider’s office and can be inclusive of a broader 
view of a patient’s care. EHRs are a vital part of health IT and are able to: 

1. Involve a patient’s medical history, diagnoses, medications, treatment plans, immunization dates, 
allergies, laboratory, and test results. 

2. Allow access to evidence-based tools that providers can use to make decisions about a patient’s 
care. 

3. Automate and streamline provider workflow. 

One of the key features of an EHR is that health information can be created and managed by author-

ized providers in a digital format capable of being shared with other providers from different health care 
organization. EHRs are built to share information among different health care providers and organiza-
tions, such as laboratories, specialists, medical imaging facilities, pharmacies, emergency facilities, and 

workplace clinics, so they contain information from all clinicians involved in a patient’s care. Many efforts 
have been performed worldwide to realize distributed EHR systems, even if with several critical issues. 

The implementation of these systems can be completed only with the deployment of numerous subsys-

tems by many different actors (hospitals, clinical laboratories, general practitioner ambulatories, etc.) and 
by preserving the user privacy. 

Furthermore, a Personal Health Record (PHR) is used to collect personal health information from the 

patient, like clinical reports, annotations or data produced by biomedical sensors. They represent an im-
portant tool complementary to EHRs, considering their ability to classify and memorize all the data pro-

vided by a patient, offering an individual’s medical history. The main difference between EHR and PHR 
lies in the nature of the health information collected. EHRs gather certified clinical information produced 

by healthcare facilities, while PHRs gather information obtained by the patients and, for this reason, these 
data are not certified.  

The volume produced by EHRs and PHRs may be large, thus the review of such data will be time-con-
suming and labor intensive. However, if the EHRs and PHRs follow specific standards for the way they are 

collected and have complete structured forms instead of containing free context, then automation algo-
rithms will be enabled to extract and process information from such data sources. A systematic review of 

automated information extraction from EHRs for the detection of different diseases can be found in [12]. 

5.2 Standards 

Many health informatics standards have been produced by the Standard Developing Organizations 
(SDOs) to ensure homogeneous implementation and interoperability of health IT systems. Standards are 
used to implement health record and workflow systems. In addition, standards have been used and inte-

grated with all the new technologies to implement additional IT applications. The most current health 
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informatics standards and technical specifications, which refer to clinical data representation and care 
planning are the HL7 FHIR and IHE PCC DCP. 

5.2.1 Fast Healthcare Interoperability Resources 

Fast Healthcare Interoperability Resources (FHIR) is a new generation standards framework employed 

by Health Level Seven (HL7) International, which provides interoperability specification for the exchange 
of electronically healthcare information. The major goal of FHIR is to simplify the implementation of 
health IT applications, without sacrificing information integrity. It offers a consistent and easy to imple-
ment mechanism for exchanging data between healthcare applications. 

The FHIR fundamental principle is the expression of the following key points: (i) focus on developers; 

(ii) support for common scenarios; (iii) leverage web technologies; (iv) human readability as a basis for 
interoperability; (v) content available for free. Regarding the data transparency, it acts as an ‘open API’ 

to access the data present in the numerous EHR systems. Also, regarding analytics, FHIR utilizes data 
structures that permit to decompose information for data analysis. 

FHIR provides many improvements over existing standards, in particular: (i)  focus on implementation; 

(ii) multiple implementation libraries with several examples; (iii) the specification is free; (iv) interopera-

bility out-of-the-box—base resources can be used, but can also be adapted for local requirements; (v) 

evolutionary development path from HL7 v2 and CDA—standards can co-exist and leverage each other; 
(vi) based on web standards like XML, JSON, HTTP, Atom, OAuth, etc.; (vii) support for RESTful architec-
tures and seamless exchange of information using messages or documents; (viii) comprehensive and eas-

ily understandable specifications; ix) relied on a human-readable format to be easily used by developers; 
(x) consolidated ontology-based analysis with a stringent formal mapping for correctness. 

The current version of the FHIR specifications is 4.0.1, available on the website HL7 FHIR 2020. The 
specifications are categorized into several levels; each of them involves a particular aspect of the stand-

ard. More specifically, level 1 supports the overall infrastructure of the FHIR specification, preserving the 
main documentation for the FHIR specification. Level 2 is responsible for the implementation and binding 

to external specifications. Level 3 connects real-world concepts in the healthcare system. Level 4 offers 
resources to record and exchange data for the healthcare process and level 5 provides the ability to ra-

tionalize about the healthcare process. The major concepts of the FHIR standard are described below [3]. 
 
Resources 

A resource is a main building block that can be utilized to store and exchange data to manage 

healthcare information and processes. A resource includes a set of structured data items and a human-
readable XHTML representation of its content. Resources are collected in the following classes: 

• Administration: covers basic data that can be represented in FHIR, such as Patient, Practitioner, 

Care Team, etc. 
• Clinical: includes clinical records (e.g. Allergy, Procedure, Care Plan/Goal, ServiceRequest) 
• Diagnostics: holds clinical diagnostics, including laboratory tests, imaging, and genomics 
• Medication: contains the ordering, dispensing, administration of medications 

• Workflow: involves the resources for managing assistance processes (e.g. appointment, order, 
encounter, etc.) 

• Financial: supports billings and payments  
• Clinical Reasoning: allows to provide the ability to reason, such as clinical decision support rules, 

quality measures, etc. 
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Data Types 

The data types are utilized to categorize the resource elements. They are divided into the following 
four categories: 

• Simple/primitive types, which are single elements with a primitive value; 

• General-purpose complex types, which are re-usable clusters of elements; 
• Metadata types, which are a set of types used with metadata resources; 
• Special purpose data types, which are defined elsewhere in the specification for specific usages. 

 

Bundling 

Bundling is called the operation executed on resources to collect them into a single instance, including 

correlated data with respect to a specific context. 

 

Profile 

A FHIR profile is a set of rules that allow a FHIR resource to include specific constraints or extensions, 
so that further attributes can be added. 

 

5.2.2 IHE PCC DCP 

The Healthcare Enterprise (IHE) is an international organization promoted by healthcare professionals 
and industries with the purpose of improving the way computer systems in healthcare share information 

by using consolidated standards [13]. IHE is organized by clinical and operational domains, where interop-
erability and issues related to clinical workflows, information sharing and improved patient care in the 

areas of healthcare are determined.  
IHE is based on a process in which devoted groups collect case requirements, define standards, and 

develop technical specifications. The documents produced, named Integration Profiles, specify how ac-
tors use standards to address a specific healthcare use case, by exchanging a set of structured messages 
named transactions. In IHE a transaction is defined as an interaction between actors that transfers the 

required information through standards-based messages.  
The Integration Profiles are published by each IHE domain as part of their technical frameworks. The 

publication process is divided in different states [14]: 

• Final Text (FT): stable; 

• Trial Implementation (TI): frozen for trial use; changes allowed prior to FT; 

• Public Comment (PC): a TI profile republished, or a new profile published for receiving public 

comments; 
• Draft Supplement: not yet ready for Public Comment; 
• Deprecated/Retired: no longer suggested or maintained by IHE 

Vendors can assess the compliance of their implementations of Integration Profiles with the technical 

specifications during periodical events named IHE Connectathons, which offer a detailed implementation 

and testing process. These events are organized annually by the Associations affiliated to IHE Interna-
tional, which are IHE Europe, IHE North America, IHE South America, IHE Asia-Oceania, IHE Middle East. 



D3.2– State of the art in bioinformatics, imaging informatics, sensor infor-
matics, public health informatics 

Page 101 of 109 

General clinical care aspects such as document exchange, order processing, workflows and coordina-
tion with other specialty domains are dealt within the IHE PCC domain, sponsored by HIMSS (Health In-
formation Management Systems Society) and ACP (American College of Physicians). Some solutions to 
these issues have been described in numerous Integration Profiles [15]. 

Specifically, the structures and transactions for care planning and sharing Care Plans that meet the 
needs of interested users are provided in the Dynamic Care Planning (DCP) Integration Profile, whose 
Revision 3.1 was published in September 2019 as Trial Implementation [16]. 

The DCP profile allows to dynamically update Care Plans by the different actors involved in the care 
processes. The profile takes advantage of these standards: 

• From a functional point of view, it is based on HL7 Service Functional Model: Coordination of 

Care Service (CCS) [17]. 
• Regarding the data model, it derives its concepts from the HL7 Care Plan Domain Analysis Model 

(DAM) [17]. 
• Regarding the technical aspects, the profile is based on HL7 FHIR Resources and transactions. 

The data that a system compliant to IHE PCC DCP should be able to process and to be represented in 

the following HL7 FHIR resources: 

• Care Plan: tool used by clinicians to plan and manage care for an individual patient 

• Plan Definition: an action definition that describes an activity to be performed 
• Activity Definition: specific actions to be performed as part of care planning.  

The actors formalized in this profile are described below: 

• Care Plan Contributor: reads, creates and updates Care Plans and Plan Definitions, generates 
Care Plans and requests resources relied on a selected activity definition; 

• Care Plan Service: coordinates Care Plans received from Care Plan Contributors and provides 

updated Care Plans to subscribed Care Plan Contributors; 
• Care Plan Definition Service: coordinates Plan Definitions received from Care Plan Contributors 

and provides updated Plan Definitions to subscribed Care Plan Contributors; 

• Care Team Contributor: reads, creates and updates Care Teams; 
• Care Team Service: manages Care Teams received from Care Team Contributors and provides 

notification of updates and access to updated Care Teams to subscribers. 
 

5.3 Clinical Pathways 

Clinical Pathways (CPs) or clinical workflows are plans of care defined to implement the clinical guide-
lines. CPs are standardized descriptions of clinical processes for defined combinations of symptoms 

adapted to clinical conditions. They are tools that permit to outline, with regards to one or more pathol-

ogies or clinical problems, the best possible path within an organization and among organizations for 

taking care of the patient. CPs lie on the concept of putting a patient in a therapeutic diagnostic path 
where the medical team determines the most suitable therapy in agreement with the interested parties. 
The purpose of CPs should be to [3]: 

• Include a clear explanation of the objectives and key elements of clinical healthcare based on 
scientific evidence; 

• Make an easier communication among team members, caregivers and patients; 
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• Manage the healthcare processes by coordinating roles and implementing the activities of mul-
tidisciplinary teams; 

• Include documentation, monitoring and evaluation of the outcomes; 
• Identify the resources necessary to implement the path. 

• Increase the quality of clinical care, improving outcomes and promoting patient safety through 
the use of the right necessary resources; 

• Support health professionals, clinicians, and care operators, by improving the quality of services.  

CPs are devised to support the professionals in this complex procedure: the design of the path, the 
execution, the evaluation of the different parameters that could lead to an improvement of the pathway 

and the possibility of managing the patient’s conditions with respect to the specific identified needs. Fur-

thermore, the integration and use of EHRs and other health information systems into CPs will permit the 
support of a multidisciplinary team of professionals from heterogeneous systems (hospitals, private clin-

ics, etc.), improving the decision making process of physicians and the quality of patient care. Once the 
most suitable treatment path for the specific problem is defined, it is crucial that all health professionals 
and the patient follow the whole workflow. The ability to update the treatment plan is also essential to 

follow the specific needs of a patient during the start of the treatment or during the therapy, to set the 

treatment plan according to patient’s needs. Nowadays, the more salient benefits of CP contain improved 

patient involvement in treatment procedures, reduced hospitalization times, improved overall medical 
quality, reduced medical costs, and reduced incidence of poor practices [18]. Fig. 9 demonstrates an ex-
ample of a clinical pathway modeled in line with OMG BPMN 2.04 standard. 

Clinical pathways are implemented in different medical domains. However, their application is typi-
cally difficult without an appropriate information communication technology (ICT) environment. It is very 

complex to implement the follow-up of the clinical process without a system able to support the physi-
cians in using efficiently the collected data, performing actions, and analyzing results. 

The definition of the IT services architecture based on informatics health standards (such as HL7, FHIR, 
IHE, etc.) and on the use of blockchain technologies will permit in a simple way to make the care plans: 

(i) interdisciplinary (among different departments and systems); (ii) connected to each other, and conse-
quently allowing interaction among different actors with different roles, use different medical skills and 

allow the communication in an easy manner. In addition, a platform able to monitor all the phases of a 
clinical workflow would permit incentivizing the patient to take part in the treatment process: in this way, 
it would be possible to have the trust from the patient and thus increase the probability that he/she will 

follow the therapy correctly. Then, it would increase the degree of personalization of the clinical pathway 
in a secure way. The use of blockchain technology in the architecture of such a platform would contribute 

to the following important benefits: 

• Identification of an integrated and verified treatment plan 

• Management of care paths in a safe way, by satisfying confidentiality and integrity 

• Log all the operations carried out on the clinical pathways for subsequent analysis phases, useful 
to certify the actions taken in the care process and possibly determine responsibilities in the 

procedure 
• Guide physicians and patients to comply with the specific treatment plan  
• Verification of the correct application of the CP specific to the situation: the system made up of 

blockchain technology can identify a deviation from the modeled CP and thus notify the ob-
served deviation. 

                                                           
4 This stands for Object Management Group, Business Process Model & Notation,  
   URL: https://www.omg.org/spec/BPMN/2.0/PDF 
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Figure 9: An example of a care plan [3]. 
 

5.4 Privacy Issues and Challenges for Health Informatics 

Research on health informatics (HI) has many interesting challenges to face, in order for the HI sector 
to be transformed. Important challenging aspects are described below [19]: 

1. Conventional healthcare environment:  To embrace the full potential of the integration of the HI 

system into healthcare environments, conventional strategies, work-plans and use of medical devices 

must be ready for changes. 

2. Infrastructure issue: HI brings new security problems and challenges. The issue of dynamic versus 
static network, with no fixed end focuses implies that a considerable amount of the existent communica-
tion mechanism for moving messages safely may not work properly. This implies that there are critical 

difficulties in the security and administration of this information, just as its assurance and security. At 

present, these associations are profoundly dependent on trust. If the medical device engineer does not 

consider cyber-attack threats while designing the devices, it can be termed as technical debt [20]. Tech-
nical debt may result in compromised medical devices with associated unpredictable behavior. The major 

concern is the impact of an exploitation rather than the exploitation itself. 

3. Device diversity, interoperability, and vulnerability: Different types of medical wearable devices 

have been used in the health informatics system. So, interoperability between those devices is a big con-

cern. It must be an interoperable system where data need to be transferred both one-to-one and one-to-
many connections, including information exchange across multiple interfaces where the devices need to 

be compatible with one another. It is mandatory to consider that in any communication between multiple 
systems, the combination of interfaces is almost double. There is no collection of information regarding 
the capability of the devices. Device registry requires indexes of devices functionality, conventions, 
phrasings, and standards. The system’s interoperability could make the system invulnerable to different 

threats. 

4. Data integrity and consistency: Data integrity meaning of preserving the original data even in the 
case of any alterations. Ensuring integrity in a HI system guarantees the correctness of data which lead to 
minimizing errors and improving the safety of patients.  



D3.2– State of the art in bioinformatics, imaging informatics, sensor infor-
matics, public health informatics 

Page 104 of 109 

5. Privacy concern: Medical information is the most private kind of information and the access to this 
information is sensitive and must be approved by assigned experts [21]. Privacy in the healthcare sector 
may cause different results to the patients including the refusal of the administration to death. For spe-
cialist co-ops, privacy breaches can prompt legitimate authorizations, financial loss, or loss of goodwill. A 

comprehensive content analysis in security and privacy issues in e-health can be found [22]. 

6. Data access control: Information access to information control is used for ensuring privacy and se-
curity to any data. For HI, it is obligatory to control access across the whole system. The whole system is 
supposed to have different access segmentation. While guaranteeing CIA triads, protecting patients’ vital 
pieces of information from unauthorized divulgence is fundamental under any conditions. Overall, the 

patient is characterized as the maker of the data. Building up the responsibility for data is important for 

securing the system from unauthorized access and manipulating the patient’s health-related information. 
Authorization is mainly carried out by a security mechanism called access control. Medical data are stored 

in the cloud which is distributed covering a larger area. Sometimes it is a challenge for the system. 

7. Human factors: Human factor plays the most crucial factor in HI and staff training is a prerequisite 
for deploying a technology-based health system. According to a study conducted by KTH university re-

search students in Sweden over physicians, it was identified that around 76% of them considered human 

factor as the ultimate challenge in EHR implementation whereas 53% had almost no interest in Health IT 

[23]. Therefore, EHR systems have a higher probability of being successfully implemented if a usability 
study is carried out beforehand adopting to the healthcare environment.  

8. Laws and ethics: Laws and ethics are the reason of privacy breach. Hospitals and governments pro-

vide records about the patient diseases to research agencies so that they could assist, e.g. in case of a 
disease outbreak. The government is supposed to assure that the research agencies deal with that infor-

mation in the best way without causing any misuse of it. 

9. Data authenticity: Authenticity is simply the validness of the data. Because of the lack of authenti-
cation of information, attacks like man-in-the-middle (MITM) could take place. To prevent this kind of 
attack, endpoint authentication is required in the cryptographic protocol. 

10. Confidentiality and availability:  The facility to protect the information in the HI system to be 
accessed by authorized subjects is called confidentiality. Confidentiality involves a lot of rules so that the 

private information could not be accessed by general mass. Authorized subjects receive access based on 
their working role. Thus, nothing about the patient’s health record should be shared without their con-
sent. 

The system should have the option to be accessed whenever required by approved ones, for instance, 
on account of any crisis circumstance a particular doctor needs access to the patient’s record to complete 
analysis and favor prescription to a patient. The system ought not to be obliged to a particular time gen-

erally; a patient may require a doctor’s support any time.  

11. Site recruitment: Site recruitment is the process of engaging a community health center and gain-
ing their interest in participating in a collaborative network [24]. The key to site recruitment is that net-
work must provide a mutually beneficial relationship between the site and other sites or users of the 

network. Site recruitment is usually hindered by financial and geographic barriers, regulatory issues when 
establishing business agreements between a new site and the shared network simply due to the sensitive 
nature of health data. 

12. 4 V’s: There are 4V’s which are challenging for HI [25]. Those are volume, variety, velocity, and 
veracity. Volume refers to the exponential growth of medical data. Velocity refers to the need of real-
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time processing for quick support and decision-making. Variety refers to the different nature of data com-
ing from varied data sources. Finally, veracity refers to the proper data quality and reliability, since most 
of the times, data are often biased, full of clatter and anomalies that create a potential threat to proper 
decision-making processes and treatments for the patients. 

 

5.5 Opportunities and Outcomes of Health Informatics 

Health Informatics brings state-of-the-art technology in healthcare sectors. Both patients and clini-
cians are depending on new electronic technology and information systems.  

Decision making support to improve patient care: For a patient, proper assessment/diagnostic and 

treatment is the most important of all. HI ameliorates the standard of treatment to patients by healthcare 

sector. HI helps data to be processed and recovered easily and effectively but can also be a resource of 
decision-making. Computerized protocols provide advantages that help make better decisions for physi-

cians and clients.  
Personalized treatment: HI will be able to provide personalized treatment to everyone in a very short 

time. It will improve the standard of treatment; patients will receive the best practice from the specialists, 

while doctors will be able to detect any diseases before a patient shows any symptoms. Furthermore, 
with the help of machine and deep learning techniques Recommender Systems (RS) can provide mean-
ingful information to the patients depending on the specific requirements and availability of health rec-

ords [26]. A recent study [27]reported the implementation of an Artificial Intelligence-Clinical Decision 
Support System (AI-CDSS) in 6 rural clinics in China, emphasizing the technical limitations and usability 

barriers, as well as issues related to transparency and trustworthiness of AI-CDSS. 
Reduce treatment costs: Due to medical errors, every year a huge amount of money has been wasted. 

HI can reduce that cost at a larger amount. Connection and transparency between the partners in the 
healthcare sector will enable the adoption of “value-based” delivery models, where clinicians receive 

higher payment for delivering more efficient care. 
Specifically, these models provide reimbursement for the improved health outcomes of a defined pa-

tient population rather than individual visits and services. This shift in the reimbursement models has 
motivated providers to better coordinate their entire patient population while controlling the overall cost 

of care. Under some of these models, value-based providers may receive a global budget for their as-
signed population, thus a reduced rate of utilization translates into larger shared-savings for both provid-
ers and payers. The latter has shifted the focus of value-based providers into prevention efforts (hence 
lower utilization) rather than costly treatment interventions, which fits well with the purposes of public 
health departments on reducing preventable diseases in large populations. In certain U.S. states such as 

Maryland, health care financing is substantially moving towards global budgets based on the size and 

characteristics of the population living in a catchment area, rather than based only on those who present 

themselves for services [28]. According to [29] a large component of an entire state’s health system’s 
budget is based on a population of people who may not utilize the health system at all. Data collected by 
public health departments are a key source of data required to calculate population-level health measures 
that will eventually be used to determine global budgets for medical care delivery systems and to evaluate 
whether they reach their community health goals, in order to achieve substantial financial incentives [30]. 

 
Study of chronic diseases: Data collected by a large health system or HIE may be used to study the 

prevalence of a specific chronic disease in a given geography [31], which is traditionally accomplished by 
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health departments using exhaustive survey methods for public health needs evaluation and monitoring 
purposes. 

 
Remote monitoring: Caregivers do not require sitting the whole day by the side of patients to monitor 

their health status. HI will permit the clinicians to monitor the patients remotely and observe multiple 
patients at a time. 

Telemedicine: Telemedicine is providing health services from remote distance through electronic sig-
nal [32]. HI is a part of telemedicine that covers distance healthcare service. Telemedicine can extend its 
dimension through HI as the use of computerized database, records, information access as well as deci-

sion making based on medical data. 

Heredity analysis: HI can incorporate genome analysis in the conventional decision-making methods 
of health care by designing innovative and reliable tools for gene sequencing. This will generate a new 

way of public health treatment. The genomic advancements can facilitate inference, treating especially 
inherited infections and multi-faceted diseases [33]. 

 

5.5.1 Public Health Informatics 3.0 

The implementation of Public Health Informatics 3.0 system may be the ‘renaissance’ of the above-
mentioned opportunities. Health 3.0 is a health-related extension of the concept of Web 3.0 [34] whereby 
the users’ interfaces with the data and information available on the web are personalized to enhance 

their experience. This is based on the concept of the Semantic Web [35], wherein websites’ data is acces-
sible for sorting to adjust the presentation of information based on user preferences. Health 3.0 will use 

such data access to enable individuals to better retrieve and contribute to personalized health-related 

information within networked electronic health records, and social networking resources [36,37]. Health 

3.0 has also been described as the idea of semantically organizing electronic health records to create an 
Open Healthcare Information Architecture [38]. Health care could also make use of social media and in-

corporate virtual tools for improved interactions between health care providers and patients. 
Health 3.0 aims to improve access to health-related information on the web via semantic and net-

worked resources, to facilitate an improved understanding of health issues with the aim of increasing 
patient self-management, enhancing health professional expertise. In addition, Health 3.0 will foster the 
creation and maintenance of supportive virtual communities within which individuals can help each other 
to understand and manage common health-related issues. Furthermore, personalized social networking 

resources can also serve as a way for health professionals to enhance individuals’ access to healthcare 
expertise, and to facilitate health professional-to-many-patients communication with the goal of im-
proved acceptance, understanding and adherence to best therapeutic options. 

However, many local communities face challenges implementing a Public Health 3.0 model. First and 
foremost, along with new informatics leadership roles for public health, there must be a workforce avail-
able to manage and analyze the data shared across the partners. It is essential for public health staff to 
have a thorough understanding of informatics, data flows, data collection processes, and the use of data 

at the public health agency in order to work productively with a larger and more diverse group of com-
munity partners. To be valuable to all partners, the electronic data available to the stakeholders must 

provide reliable and actionable data that will inform and add value to the component groups providing 
the data. This data sharing network will need to be transparent on how data are collated, protected, and 
shared with members of consortia.  
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So far, public health at a local level has been unable to integrate information technology. Furthermore, 
health departments face financial and resource shortages, specifically reduced government spending for 
public health. 
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